域对抗(域适应)训练

在传统监督学习中,我们经常需要大量带标签的数据进行训练,并且需要保证训练集和测试集中的数据分布相似。如果训练集和测试集的数据具有不同的分布,训练后的分类器在测试集上就没有好的表现。这种情况下该怎么办呢?

域适应(Domain Adaption),也可称为域对抗(Domain Adversarial),是迁移学习中一个重要的分支,用以消除不同域之间的特征分布差异。其目的是把具有不同分布的源域(Source Domain) 和目标域 (Target Domain) 中的数据,映射到同一个特征空间,寻找某一种度量准则,使其在这个空间上的“距离”尽可能近。然后,我们在源域 (带标签) 上训练好的分类器,就可以直接用于目标域数据的分类。

如上图所示,图a为源域样本分布(带标签),图b为目标域样本分布,它们具有共同的特征空间和标签空间,但源域和目标域通常具有不同的分布,这就意味着我们无法将源域训练好的分类器,直接用于目标域样本的分类。因此,在域适应问题中,我们尝试对两个域中的数据做一个映射,使得属于同一类(标签)的样本聚在一起。此时,我们就可以利用带标签的源域数据,训练分类器供目标域样本使用。

2. DANN简介(Domain-Adversarial Neural Networks)
 Domain adaptation 过程中最关键的一点就是如何做到将源域样本和目标域样本混合在一起,并且还能保证被同时分开,DANN的主要任务之一就是这个。

如上图所示,DANN结构主要包含3个部分:

特征提取器 (feature extractor) - 图示绿色部分:1)将源域样本和目标域样本进行映射和混合,使域判别器无法区分数据来自哪个域;2)提取后续网络完成任务所需要的特征,使标签预测器能够分辨出来自源域数据的类别
标签预测器 (label predictor) - 图示蓝色部分:对来自源域的数据进行分类,尽可能分出正确的标签。
域判别器(domain classifier)- 图示红色部分:对特征空间的数据进行分类,尽可能分出数据来自哪个域。
2.1 DANN整体流程
特征提取器提取的信息会传入域分类器,之后域分类器会判断传入的信息到底是来自源域还是目标域,并计算损失。域分类器的训练目标是尽量将输入的信息分到正确的域类别(源域还是目标域),而特征提取器的训练目标却恰恰相反(由于梯度反转层的存在),特征提取器所提取的特征(或者说映射的结果)目的是是域判别器不能正确的判断出信息来自哪一个域,因此形成一种对抗关系。

特征提取器提取的信息也会传入Label predictor (类别预测器)了,因为源域样本是有标记的,所以在提取特征时不仅仅要考虑后面的域判别器的情况,还要利用源域的带标记样本进行有监督训练从而兼顾分类的准确性。

 2.2 梯度反转层(Gradient reversal layer)
在反向传播更新参数的过程中,梯度下降是最小化目标函数,而特征提取器任务是最大化label分类准确率但最小化域分类准确率,因此要最大化域判别器目标函数。因此,在域分类器和特征提取器中间有一个梯度反转层(Gradient reversal layer),在粉色部分的参数向Ld减小的方向优化,绿色部分的梯度向Ld增大的方向优化,用一个网络一个优化器就实现了两部分有不一样的优化目标,形成对抗的关系。

具体的:GRL就是将传到本层的误差乘以一个负数(-),这样就会使得GRL前后的网络其训练目标相反,以实现对抗的效果。

 PyTorch代码实现:

import torch
from torch.autograd import Function
 
class GRL(Function):
    def __init__(self,lambda_):
        super(GRL, self).__init__()
        self.lambda_=lambda_
 
    def forward(self, input):
        return input
 
    def backward(self, grad_output):
        grad_input = grad_output.neg()
        return grad_input*self.lambda_
 
x = torch.tensor([1., 2., 3.], requires_grad=True)
y = torch.tensor([4., 5., 6.], requires_grad=True)
 
z = torch.pow(x, 2) + torch.pow(y, 2)
f = z + x + y
 
 
Grl = GRL(lambda_=1)
s = 6 * f.sum()
s = Grl(s)
 
print(s)
s.backward()
print(x.grad)
print(y.grad)


结果:

tensor(672., grad_fn=<GRL>)
tensor([-18., -30., -42.])
tensor([-54., -66., -78.])
这个运算过程对于tensor中的每个维度上的运算为:

那么对于x的导数为:

所以当输入x=[1,2,3]时,原本对应的梯度为:[18,30,42],由于GRL存在,梯度为:[-18,-30,-42]

2.3 损失计算
在训练的过程中,对来自源域的带标签数据,网络不断最小化标签预测器的损失 (loss)。对来自源域和目标域的全部数据,网络不断最小化域判别器的损失。

以单隐层为例,对于特征提取器就是一层简单的神经元(复杂任务中就是用多层):

对于类别预测器:

Loss: 

因此在源域上,训练优化目标就是:

 对于域分类器:

 Loss: 

 训练优化目标是:

总体的损失函数是:

 其中,迭代过程,通过最小化目标函数来更新标签预测器的参数,最大化目标函数来更新域判别器的参数。

3. 与GAN对比


生成对抗网络包含一个生成器(Generator)和一个判别器(Discriminator)。生成器用来生成假图片,判别器则用来区分,输入的图片是真图片还是假图片。生成器希望生成的图片可以骗过判别器(以假乱真),而判别器则希望提高辨别能力防止被骗。两者互相博弈,直到系统达到一个稳定状态(纳什平衡)。

在域适应问题中, 存在一个源域和目标域。和生成对抗网络相比,域适应问题免去了生成样本的过程,直接将目标域中的数据看作生成的样本。因此,生成器的目的发生了变化,不再是生成样本,而是扮演了一个特征提取(feature extractor)的功能。
————————————————
版权声明:本文为CSDN博主「Janie.Wei」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weijie_home/article/details/119921964

  • 15
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Transformer无监督适应是指利用Transformer模型对不同分布的数据进行特征对齐和噪声去除的任务。由于Transformer中的交叉注意力机制能够很好地对齐不同分布的数据,因此可以将其应用于无监督适应任务中。在这个任务中,我们可以使用源数据进行预训练,然后使用目标数据进行微调,以达到特征对齐和噪声去除的目的。这种方法已经在图像分类和目标检测等任务中取得了很好的效果。 具体来说,无监督适应的过程可以分为以下几个步骤: 1. 使用源数据进行预训练,得到一个Transformer模型。 2. 使用目标数据进行微调,以适应目标的数据分布。 3. 在微调过程中,可以使用一些技巧来增强模型的鲁棒性,例如对抗训练和自监督学习等。 下面是一个示例代码,展示了如何使用PyTorch实现无监督适应: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision.transforms import ToTensor from transformers import BertModel # 定义模型 class DomainAdaptationModel(nn.Module): def __init__(self): super(DomainAdaptationModel, self).__init__() self.bert = BertModel.from_pretrained('bert-base-uncased') self.fc = nn.Linear(768, 10) def forward(self, x): x = self.bert(x)[1] x = self.fc(x) return x # 定义数据集 source_dataset = MNIST(root='./data', train=True, transform=ToTensor(), download=True) target_dataset = MNIST(root='./data', train=False, transform=ToTensor(), download=True) # 定义数据加载器 source_loader = DataLoader(source_dataset, batch_size=32, shuffle=True) target_loader = DataLoader(target_dataset, batch_size=32, shuffle=True) # 定义模型和优化器 model = DomainAdaptationModel() optimizer = optim.Adam(model.parameters(), lr=1e-3) # 定义损失函数 criterion = nn.CrossEntropyLoss() # 训练模型 for epoch in range(10): for i, (source_data, target_data) in enumerate(zip(source_loader, target_loader)): source_inputs, source_labels = source_data target_inputs, _ = target_data optimizer.zero_grad() # 计算源数据的损失 source_outputs = model(source_inputs) source_loss = criterion(source_outputs, source_labels) # 计算目标数据的损失 target_outputs = model(target_inputs) target_loss = -torch.mean(target_outputs) # 计算总损失 loss = source_loss + target_loss # 反向传播和优化 loss.backward() optimizer.step() if i % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, 10, i+1, len(source_loader), loss.item())) # 测试模型 with torch.no_grad(): correct = 0 total = 0 for data in target_loader: inputs, labels = data outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the test images: {} %'.format(100 * correct / total)) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值