4D Gaussian Splatting:用于实时的动态场景渲染 学习笔记

目录

4D Gaussian Splatting是什么


4D Gaussian Splatting是什么

什么是 Gaussian Splatting?

Gaussian Splatting 是一种通过将点或其他几何元素表示为多维高斯分布来进行渲染的技术。其核心思想是用一个高斯分布(通常是二维或三维)来表示一个点或一个区域,这样可以用更少的数据来描述和渲染复杂的图形。

4D Gaussian Splatting 的含义

4D Gaussian Splatting 指的是使用四维高斯分布来描述三维空间中的点。第四维通常表示点的属性或附加信息,比如颜色、时间或其他特征:

  1. 三维位置:三维高斯分布的均值(mean)表示点的空间位置,而协方差矩阵(covariance matrix)描述了点周围的分布形状。

  2. 第四维度:可以代表时间、颜色强度、透明度或其他用于渲染或分析的特征。

应用

  1. 计算机图形学:4D Gaussian Splatting 被用于对三维场景进行高效的表示和渲染。它可以通过将大量的点表示为高斯分布来简化渲染过程,并可以通过调节这些分布来模拟各种效果。

  2. 计算机视觉:在计算机视觉领域,它可以用于表示和分析三维点云数据。4D Gaussian Splatting 能够对空间中的点进行聚合,并通过调整分布参数来建模复杂的对象或场景。

  3. 数据压缩:由于高斯分布提供了一种简洁的方式来表示点数据,它可以用于压缩三维场景,减少存储和计算资源的需求。

优势

  • 数据简化:通过用高斯分布来描述点云,可以减少需要存储和处理的数据量。

  • 渲染效率:由于可以一次性渲染一组点,可以提高渲染效率,特别是在需要大量点云数据的应用中。

  • 灵活性:4D Gaussian Splatting 可以通过调整分布参数来适应不同的应用需求,比如不同的颜色、时间变化或透明度效果。

4D Gaussian Splatting 提供了一种在计算机图形学和计算机视觉中有效地表示和处理三维点数据的方法,为数据压缩、渲染优化和场景分析等领域提供了新的解决方案。

算法介绍

4D Gaussian Splatting 技术梳理(持续更新) - 知乎

4D动态生成模型——DreamGaussian4D: Generative 4D Gaussian Splatting - 知乎 

### 使用球形高斯加速3D高斯点绘的技术细节 #### SG-Splatting 技术概述 SG-Splatting 是一种用于加速 3D 高斯点绘 (3D Gaussian Splatting) 的技术,通过引入球形高斯函数来简化计算并提高渲染效率。该方法特别适用于实时辐射场渲染场景中的复杂光照效果模拟。 #### 实现原理 为了有效处理大规模的三维数据集,在传统基础上进行了改进: - **球形高斯表示**:采用球形高斯分布代替标准椭圆体模型,使得每个粒子可以被更简单地描述为位置、方向以及强度参数组合而成的形式[^1]。 - **高效采样策略**:利用球形对称性质减少不必要的冗余运算;同时针对不同视角下的可见性变化设计自适应调整机制以优化性能表现[^2]。 - **颜色分解**:为进一步增强对于具有镜面反射特性的物体表面特征捕捉能力,提出了将色彩信息拆解成漫反射与镜面反射两部分的方法。这不仅有助于区分高低频信号差异,还能够更好地匹配实际物理现象中光线传播规律[^3]。 ```python import numpy as np def spherical_gaussian(position, direction, intensity): """ 计算单个球形高斯项 参数: position -- 中心坐标向量 direction -- 方向单位向量 intensity -- 强度系数 返回值: sg_value -- 球形高斯响应值 """ # 假设输入已经过预处理转换到局部坐标系下 r_squared = sum([p*p for p in position]) dot_product = sum([d * p for d,p in zip(direction,position)]) exponent_term = -(r_squared - dot_product*dot_product)/(2*(intensity**2)) normalization_factor = 1 / ((np.sqrt(2*np.pi)*abs(intensity))**(len(position)-1)) return normalization_factor * np.exp(exponent_term) ``` #### 性能优势 得益于上述特性,基于球形高斯的 splatting 方法能够在保持高质量视觉呈现的同时显著降低计算成本,尤其适合应用于动态环境中快速更新视图的需求场合。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值