语音识别 学习笔记2024

本文介绍了Python库librosa用于音频特征提取的方法,以及如何结合Wav2Vec2模型进行音频转为特征向量。同时展示了如何使用SpeechRecognition进行语音识别的基本操作。
摘要由CSDN通过智能技术生成

目录

dragonfly

阿里达摩院FunASR:一款高效的端到端语音识别工具包

不错的功能介绍

librosa安装

语音识别


dragonfly

阿里达摩院FunASR:一款高效的端到端语音识别工具包

不错的功能介绍

librosa,一个很有趣的 Python 库! - 简书

音频转特征向量

GitHub - librosa/librosa: Python library for audio and music analysis

librosa安装

2024.04.27 测试ok Win11系统

pip install librosa

import os

import numpy as np
from transformers import Wav2Vec2Processor, Wav2Vec2Model
import torch

import librosa


def load_example_input(audio_path, processor=None):
    if processor is None:
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")

    speech_array, sampling_rate = librosa.load(os.path.join(audio_path), sr=16000)

    audio_feature = np.squeeze(processor(speech_array, sampling_rate=sampling_rate).input_values)

    audio_feature = np.reshape(audio_feature, (-1, audio_feature.shape[0]))

    return torch.FloatTensor(audio_feature)


audio_path=r'demo/wav/man.wav'


load_example_input(audio_path)

语音识别

pip install SpeechRecognition

pip install pyaudio

import librosa
import speech_recognition as sr

# 录制音频
r = sr.Recognizer()
with sr.Microphone() as source:
    print("请开始说话...")
    audio = r.listen(source)

# 将音频转换为文本
try:
    text = r.recognize_google(audio)
    print("识别结果:", text)
except sr.UnknownValueError:
    print("无法识别音频")
except sr.RequestError as e:
    print(f"请求出错:{e}")

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值