Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

RuntimeError: CUDA error: invalid device ordinal
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

原因:

os.environ['CUDA_VISIBLE_DEVICES'] = '2'


然后绑定显卡:

import torch
from transformers import StableDiffusionUpscalePipeline
 
# 指定模型名称和数据类型
model_name = "your_model_name"
torch_dtype = torch.float16  # 或者 torch.float32, 取决于你的需求
 
# 加载模型并将其移动到第二个GPU(cuda:1)
pipe = StableDiffusionUpscalePipeline.from_pretrained(model_name, torch_dtype=torch_dtype).to("cuda:1")


 
# 现在 pipe 已经在第二个显卡上
代码解读
解决方法:
注释掉:

os.environ['CUDA_VISIBLE_DEVICES'] = '2'
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值