sam2 windows 编译安装

目录

1. pip install sam2

2. 编译安装


1. pip install sam2

运行报错:

cannot import name '_C' from 'sam2' (E:\project\smpl\render_blender\linux\GroundedSAM2_SMPL\sam2\__init__.py) 

2. 编译安装

cd E:\project\sam2\sam2-main

set DISTUTILS_USE_SDK=1

python setup.py build_ext --inplace

报错:

running build_ext [WinError 2] 系统找不到指定的文件。 Failed to build the SAM 2 CUDA extension due to the error above. You can still use SAM 2 and it's OK to ignore the error above, although some post-processing functionality may be limited (which doesn't affect the results in most cases; (see https://github.com/facebookresearch/sam2/blob/main/INSTALL.md). 怎么解决

解决方法:

pip install --no-build-isolation -e .

参考:【SAM2本地编译部署】_sam2部署-CSDN博客

### SAM2 的部署方法概述 SAM2 是 Segment Anything Model (SAM) 的升级版本,其安装和配置过程通常基于 Docker 容器化环境来实现。以下是关于如何在 Ubuntu 22.04/20.04 上完成 SAM2 部署的相关说明。 #### 环境准备 为了成功部署 SAM2,在开始之前需要确保系统满足以下条件: - 已经安装并运行 Docker[^1]。 - 下载了最新的 SAM2 权重文件(例如 `sam_vit_h_4b8939.pth`),该权重文件可以通过官方链接获取或者从其他可信资源下载。 #### 安装步骤 1. **启动 CVAT 容器** 如果尚未启动 CVAT 容器,则可以按照如下命令创建一个新的容器实例: ```bash docker run -d --name cvat -p 8080:8080 \ -v /path/to/local/data:/home/django/data \ openvino/cvat:latest ``` 2. **复制 SAM2 权重至容器内部目录** 使用 `docker cp` 命令将本地已下载的 SAM2 权重文件传输到正在运行中的容器指定路径下: ```bash docker cp ./sam_vit_h_4b8939.pth <container_id>:/opt/nuclio/sam/ ``` 这里 `<container_id>` 可通过执行 `docker ps` 查看当前活动容器 ID 替代。 3. **验证模型加载状态** 登录进入目标容器后,确认 `/opt/nuclio/sam/` 路径下的权重组件是否存在以及权限设置无误: ```bash docker exec -it <container_id> bash ls -l /opt/nuclio/sam/ chmod 644 /opt/nuclio/sam/*.pth exit ``` 4. **重启服务使更改生效** 修改完成后需重新启动相关联的服务进程以应用新的参数调整: ```bash docker restart <container_id> ``` #### 故障排查技巧 如果遇到任何异常情况,请参照官方文档中提到的常见问题解决方案部分进行逐一排除。比如网络连接超时、存储空间不足等问题都可能导致初始化失败。 ```python import torch from segment_anything import sam_model_registry, SamPredictor device = "cuda" if torch.cuda.is_available() else "cpu" model_type = "vit_h" # 加载预训练模型 checkpoint_path = "/opt/nuclio/sam/sam_vit_h_4b8939.pth" sam = sam_model_registry[model_type](checkpoint=checkpoint_path).to(device=device) predictor = SamPredictor(sam) print("Model loaded successfully.") ``` 上述脚本展示了如何利用 PyTorch 库加载自定义位置上的 SAM 模型权重,并将其分配给 GPU 设备用于加速推理计算操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值