Softmax的理解与应用

公式:

https://www.jianshu.com/p/695136c5647b

 

softmx 值越大,分数越高,不是正比例关系

两组值是不一样的:

import numpy as np
z = np.array([1.0, 2.0])
print(np.exp(z)/sum(np.exp(z)))
 
z = np.array([0.1, 0.2])
print(np.exp(z)/sum(np.exp(z)))
————————————————
版权声明:本文为CSDN博主「ShellCollector」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/jacke121/article/details/104666276/

 

softmax VS k个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢? 
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。) 
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。 
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢? 
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

 

我们知道max,假如说我有两个数,a和b,并且a>b,如果取max,那么就直接取a,没有第二种可能

但有的时候我不想这样,因为这样会造成分值小的那个饥饿。所以我希望分值大的那一项经常取到,分值小的那一项也偶尔可以取到,那么我用softmax就可以了 
现在还是a和b,a>b,如果我们取按照softmax来计算取a和b的概率,那a的softmax值大于b的,所以a会经常取到,而b也会偶尔取到,概率跟它们本来的大小有关。所以说不是max,而是 Soft max 
那各自的概率究竟是多少呢,我们下面就来具体看一下

定义

假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的Softmax值就是 

Si=ei∑jej

也就是说,是该元素的对数值,与所有元素对数值和的比值

 

这个定义可以说非常的直观,当然除了直观朴素好理解以外,它还有更多的优点

1.计算与标注样本的差距

在神经网络的计算当中,我们经常需要计算按照神经网络的正向传播计算的分数S1,和按照正确标注计算的分数S2,之间的差距,计算Loss,才能应用反向传播。Loss定义为交叉熵

 

Li=−log(efyi∑jej)

取log里面的值就是这组数据正确分类的Softmax值,它占的比重越大,这个样本的Loss也就越小,这种定义符合我们的要求

 

2.计算上非常非常的方便

当我们对分类的Loss进行改进的时候,我们要通过梯度下降,每次优化一个step大小的梯度,这个时候我们就要求Loss对每个权重矩阵的偏导,然后应用链式法则。那么这个过程的第一步,就是求Loss对score的偏导 (下面公式推导部分对于求偏导符号就用求导符号代替)

我们首先定义

Pyi=efyi∑jej 是选到yi的概率

Li=−log(efyi∑jej)是我们之前提到的交叉熵 
那么我们求Loss对score的偏导就是

∂Li∂fyi=−ln(efyi∑jej)′ 
=−1∗∑jejefyi∗(efyi∑jej)′=−1∗∑jejefyi∗(1−∑j≠fyiej∑jej)′

=−1∗∑jejefyi∗(−1)∗∑j≠fyiej∗(−1)∗1(∑jej)2∗(∑jej)′

=−1∗∑jejefyi∗(−1)∗∑j≠fyiej∗(−1)∗1(∑jej)2∗efyi 
=−∑j≠fyiej∑jej 
=−(1−Pfyi)=Pfyi−1

最后结果的形式非常的简单,只要将算出来的概率的向量对应的真正结果的那一维减1,就可以了

举个例子,通过若干层的计算,最后得到的某个训练样本的向量的分数是[ 1, 5, 3 ], 
那么概率分别就是[e1e1+e3+e5,e5e1+e3+e5,e3e1+e3+e5]=[0.015,0.866,0.117],如果这个样本正确的分类是第二个的话,那么计算出来的偏导就是[0.015,0.866−1,0.117]=[0.015,−0.134,0.117],是不是很简单!!然后再根据这个进行back propagation就可以了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值