矩阵乘以它的转置

本文探讨了矩阵与其转置相乘的特性及其在二次型中的应用。详细解释了矩阵A乘以其转置A^T的运算结果,并指出其与矩阵行列式的平方并无直接等价关系。此外还介绍了该运算在参数估计、控制系统及信号处理等领域的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵乘以它的转置

AA^T| = |A| |A^T| = |A||A| = |A|^2即矩阵A乘以A的转置等于A的行列式的平方。

明显不等于啦,1*2的矩阵转置矩阵为2*1,那么1*2的矩阵乘以2*1的转置矩阵得到一个1*1的矩阵,而2*1的转置矩阵乘以1*2的矩阵得到一个2*2的矩阵
这个得出的矩阵是对称矩阵。
可以在解二次曲线方程时很有用。
主要是在矩阵论和线性代数里,有专门的篇幅讲解二次型的定义与应用
可以在解二次曲线方程时很有用。
主要是在矩阵论和线性代数里,有专门的篇幅讲解二次型的定义与应用

矩阵转置乘以本身后,便有如下性质:

 

应用:矩阵转置乘以自身这种操作的应用非常广泛:如参数估计理论中的最小二乘,控制系统中的能观性能观性平衡实现,信号传输中的K-L变换等等。


作者:Navy
链接:https://www.zhihu.com/question/269309688/answer/1754797471

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值