正交向量 正交矩阵

目录

正交向量

如何判断向量正交:

正交矩阵

定义

概述

例子

基本变换

性质

矩阵性质

群性质

规范形式


正交向量

“正交向量”是一个数学术语,指点积为零的两个或多个向量

 换句话说, 两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β

如何判断向量正交:

内积:对应位置相乘再求和,是内积

卷积:加上滑动窗口

判断向量是否正交:

两个向量正交:求其内积,看是否为0,若为零,则正交。

在空间上向量垂直就正交。


例子:a=(1,1,0),b=(1,-1,0) ,则内积(a,b)=1*1+1*(-1)+0*0=0,所以a,b正交。

如何求解正交矩阵:

https://jingyan.baidu.com/article/9faa72318364a7473c28cbe9.html

正交矩阵

正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。

定义

  定义 1
  如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。)或A′A=E,则n阶实矩阵 A称为正交矩阵, 若A为正交阵,则满足以下条件:
  1) A 是正交矩阵
  2) AA′=E(E为单位矩阵)(#add它的转置矩阵是它的逆矩阵,这是很重要的)
  3) A′是正交矩阵
  4) A的各行是单位向量且两两正交
  5) A的各列是单位向量且两两正交
  6) (Ax,Ay)=(x,y) x,y∈R
   正交矩阵通常用字母Q表示。
  举例:A=[r11 r12 r13;r21 r22 r23;r31 r32 r33]
 
  正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。
  在 矩阵论中, 实数 正交矩阵方块矩阵 Q,它的 转置矩阵是它的 逆矩阵:
  ,如果正交矩阵的 行列式为 +1,则我们称之为 特殊正交矩阵:

概述

  要看出与内积的联系,考虑在  n 维实数 内积空间中的关于正交基写出的向量 vv 的长度的平方是 vv。如果矩阵形式为 Q v 的线性变换保持了向量长度,则
  所以有限维线性 等距同构,比如 旋转反射和它们的组合,都产生正交矩阵。反过来也成立: 正交矩阵蕴涵了正交变换。但是, 线性代数包括了在既不是有限维的也不是同样维度的空间之间的 正交变换,它们没有等价的正交矩阵。
  有多种原由使正交矩阵对理论和实践是重要的。 n× n 正交矩阵形成了一个 ,即指示为 O( n) 的 正交群,它和它的子群广泛的用在数学和物理科学中。例如,分子的 点群O(3) 的子群。因为浮点版本的正交矩阵有有利的性质,它们是字数值线性代数中很多算法比如 QR分解的关键,通过适当的规范化, 离散余弦变换 (用于 MP3 压缩)可用正交矩阵表示。

例子

  下面是一些小正交矩阵的例子和可能的解释。
  恒等变换。 旋转 16.26°。 针对  x 轴反射。 旋转反演(rotoinversion): 轴 (0,-3/5,4/5),角度90°。 置换坐标轴。
 

基本变换

  最基本的置换是换位(transposition),通过交换单位矩阵的两行得到。任何  n× n 置换矩阵都可以构造为最多  n−1 次换位的积。 构造自非零向量  v 的 Householder反射为
  这里的分子是对称矩阵,而分母是  v 的平方量的一个数。这是在垂直于  v 的超平面上的反射(取负平行于 v 任何向量分量)。如果 v 是单位向量,则 Q =  I−2 vv 就足够了。Householder 反射典型的用于同时置零一列的较低部分。任何 n× n 正交矩阵都可以构造为最多 n 次这种反射的积。
  Givens旋转作用于由两个坐标轴所生成的二维(平面)子空间上,按选定角度旋转。它典型的用来置零一个单一的次对角线元素(subdiagonal entry)。任何 n× n 的旋转矩阵都可以构造为最多 n( n−1)/2 次这种旋转的积。在 3x3 矩阵的情况下,三个这种旋转就足够了;并且通过固定这个序列,我们可以用经常叫做 欧拉角的三个角来(尽管不唯一)描述所有 3×3 旋转矩阵。
  雅可比旋转有同 Givens 旋转一样的形式,但是被用做 相似变换,选择来置零 2×2 子矩阵的两个远离对角元素(off-diagonal entry)。

性质

矩阵性质

  实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得 点积欧几里得空间 R 的正交规范基,它为真当且仅当它的行形成 R 的正交基。假设带有正交(非正交规范)列的矩阵叫正交矩阵可能是诱人的,但是这种矩阵没有特殊价值而没有特殊名字;他们只是 MM = DD 是 对角矩阵
   任何正交矩阵的行列式是 +1 或 −1。这可从关于行列式的如下基本事实得出:
  反过来不是真的;有 +1 行列式不保证正交性,即使带有正交列,可由下列反例证实。
  对于置换矩阵,行列式是 +1 还是 −1 匹配置换是偶还是奇的 标志,行列式是行的交替函数。
   比行列式限制更强的是正交矩阵总可以是在复数上可对角化来展示特征值的完全的集合,它们全都必须有(复数)绝对值 1。

群性质

   正交矩阵的逆是正交的,两个正交矩阵的积是正交的。事实上,所有  n× n 正交矩阵的集合满足群的所有公理。它是  n( n−1)/2 维的 紧致 李群,叫做正交群并指示为 O( n)。
  行列式为 +1 的正交矩阵形成了路径连通的子群指标为 2 的  O( n正规子群,叫做旋转的特殊正交群  SO( n)。 商群 O( n)/ SO( n) 同构于 O(1),带有依据行列式选择 [+1] 或 [−1] 的投影映射。带有行列式 −1 的正交矩阵不包括单位矩阵,所以不形成子群而只是 陪集;它也是(分离的)连通的。所以每个正交群被分为两个部分;因为投影映射 分裂O( n) 是  SO( n) 与  O(1)的 半直积。用实用术语说,一个相当的陈述是任何正交矩阵可以通过采用一个旋转矩阵并可能取负它的一列来生成,如我们在 2×2 矩阵中看到的。如果 n 是奇数,则半直积实际上是 直积,任何正交矩阵可以通过采用一个旋转矩阵并可能取负它的所有列来生成。
  现在考虑 ( n+1)×( n+1) 右底元素等于 1 的正交矩阵。最后一列(和最后一行)的余下元素必须是零,而任何两个这种矩阵的积有同样的形式。余下的矩阵是 n× n 正交矩阵;因此 O( n) 是 O( n+1) (和所有更高维群)的子群。
  因为 Householder 正交矩阵形式的基本反射可把任何正交矩阵简约成这种约束形式,一系列的这种反射可以把任何正交矩阵变回单位矩阵;因此正交群是反射群。最后一列可以被固定为任何单位向量,并且每种选择给出不同的 O( n) 在 O( n+1) 中的复本;以这种方式 O( n+1) 是在单位球 S 与纤维  O( n) 上的
  类似的, SO( n) 是  SO( n+1) 的子群;任何特定正交矩阵可以使用类似过程通过 Givens 平面旋转来生成。丛结构持续: SO( n) ↪ SO( n+1) → S。一个单一旋转可以在最后一列的第一行生成一个零,而 n−1 次旋转序列将置零 n× n 旋转矩阵的除了最后一列的最后一行的所有元素。因为平面是固定的,每次旋转只有一个自由度,就是它的角度。通过归纳, SO( n) 因此有
  自由度, O( n) 也是。
  置换矩阵简单一些;它们不形成李群,只是一个有限群, n! 次 对称群 Sn。通过同类的讨论, Sn 是 Sn+1 的子群。偶置换生成行列式 +1 的置换矩阵的子群, n!/2 次交错群。

规范形式

  更广泛的说,任何正交矩阵的效果分离到在正交二维空间上的独立动作。就是说,如果  Q 是狭义正交的,则你可以找到(旋转)改变基的一个正交矩阵  P,把  Q 带回到分块对角形式:
  ( n 偶数), ( n 奇数)。 这里的矩阵  R1,..., Rk 是 2×2 旋转矩阵,而余下的元素是零。作为例外,一个旋转块可以是对角的, ± I。因此如果需要的话取负一列,并注意 2×2 反射可对角化为 +1 和 −1,任何正交矩阵可变为如下形式
  , 矩阵  R1,…, Rk 给出位于 复平面中单位圆上的特征值的共轭对;所以这个分解复合确定所有带有绝对值 1 的特征值。如果 n 是奇数,至少有一个实数特征值 +1 或 −1;对于 3×3 旋转,关联着 +1 的特征向量是旋转轴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值