Windows安装Pytorch/torchvision

windows linux通用:

1.7.1 支持cuda10.1

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
————————————————
版权声明:本文为CSDN博主「AI视觉网奇」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/jacke121/article/details/79825694

可以去官网https://pytorch.org/

直接选择需要的版本,进行下载:

https://pytorch.org/get-started/previous-versions/

下载历史版本whl自己安装,可以选cuda版本:

https://download.pytorch.org/whl/torch_stable.html

Windows下用Anaconda安装Pytorch/torchvision

原文:https://blog.csdn.net/yimingsilence/article/details/79126914

1. 安装Anaconda最新版

2. 依赖的环境

  • Anaconda3 x64 (with Python 3.5/3.6)
  • Windows 64位系统(Windows 7 或 Windows Server 2008 及以上)
  • CUDA 8 / CUDA 9
  • cuDNN v5以上
  • 如果安装了CUDA编译的包,请确保你的电脑有Nvidia的显卡。
  • 注:这里没有介绍GPU版本的安装方法,如需要的请搜索其他博文。

3. 开始菜单打开Anaconda Prompt,在里面输入conda create -n pytorch python=3.5,为pytorch创建一个虚拟环境

3.5 添加清华镜像

 conda config --addchannels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

 conda config --setshow_channel_urls yes

4. activate pytorch 激活这个虚拟环境(取消激活用deactivate)

5. 在这个环境中,

# for CPU only packages
conda install -c peterjc123 pytorch

# for Windows 10 and Windows Server 2016, CUDA 8
conda install -c peterjc123 pytorch cuda80

# for Windows 10 and Windows Server 2016, CUDA 9
conda install -c peterjc123 pytorch cuda90

# for Windows 7/8/8.1 and Windows Server 2008/2012, CUDA 8
conda install -c peterjc123 pytorch_legacy cuda80

5.5. torch安装好了其实还是需要torchvision的

使用本地安装的方法,先下载安装包

https://pypi.python.org/pypi/torchvision/0.1.8

然后在安装包所在的目录中用下面的命令安装:

pip install 下载的安装包的名字.whl

6. 测试torch

在Anaconda Prompt 里面打开python 然后键入import torch
还有 import torchvision

7. 测试CUDA和cuDNN

# CUDA TEST
import torch
x = torch.Tensor([1.0])
xx = x.cuda()
print(xx)

# CUDNN TEST
from torch.backends import cudnn
print(cudnn.is_acceptable(xx))

8. 如果CUDA工作不正常,就要关掉了

cudnn.enabled = False

9. over

### 如何在本地环境中下载并正确安装 PyTorch 为了确保在本地环境中顺利安装 PyTorch,以下是详细的说明: #### 创建虚拟环境 建议使用 `conda` 或其他工具来管理 Python 虚拟环境。这有助于隔离不同项目的依赖关系。可以通过以下命令创建一个新的虚拟环境,并指定所需的 Python 版本: ```bash conda create -n pytorch_env python=3.9 ``` 这里将虚拟环境命名为 `pytorch_env` 并指定了 Python 3.9 的版本[^2]。 激活刚刚创建的虚拟环境: ```bash conda activate pytorch_env ``` #### 安装 PyTorch 根据目标硬件配置(CPU/GPU)以及操作系统的需求,选择合适的安装方式。如果需要 GPU 支持,则需确认已安装与之匹配的 CUDA 和 cuDNN 版本[^1]。 对于支持 CUDA 11.8 的设备,可运行以下命令以安装特定版本的 PyTorch 及其相关库: ```bash pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu118 ``` 此命令会自动从指定索引 URL 中获取适用于 CUDA 11.8 的预编译二进制文件[^4]。 如果没有可用的 NVIDIA 显卡或者不打算利用 GPU 加速计算能力的话,可以选择仅针对 CPU 进行优化过的发行版: ```bash pip install torch torchvision torchaudio ``` 验证安装是否成功的方法之一就是尝试导入模块到交互式的解释器当中去测试一下基本功能能否正常运作: ```python import torch print(torch.__version__) if torch.cuda.is_available(): print('CUDA is available') else: print('No CUDA support detected.') ``` 更多关于自定义选项的信息可以从官方文档页面找到进一步指导[^5]。 #### 常见问题排查 - **兼容性错误**:务必检查所选 CUDA 和 cuDNN 是否适合当前系统的驱动程序版本。 - **网络连接失败**:当无法访问互联网时,提前手动下载 WHL 文件再离线部署也是一种解决办法。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值