torch多维取数据

 

索引类型只支持uint8或者int64

bytes 或者long类型

import torch
import numpy as np
a=torch.zeros((4,3,3))

b=torch.ones((4,3)).type(torch.uint8)

print(a[b])

结果是12,3

# import numpy as np
#
# a = np.zeros((80,10, 3))
# # a=np.array([1,2,3])
# b = np.zeros((80,10),dtype=np.int32)
#
# print(a[b])

import torch
import numpy as np
a=torch.zeros((4,3))

b=np.asarray([[1,2],[1,2],[0,1]])
b=torch.ones((4,3)).type(torch.uint8)
# b+=1
c=[1,2]
print(a[b])
a[a<=0]=1
print(a)

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值