MnasNet:352 352 需要21ms,听说准确率比shuffle v2高 cpu 17需要600ms
shuffle net V2 原版需要23ms,cpu需要200ms
改造 yolov3用: 需要30ms cpu需要180ms 加上yolo层 230ms
yolo v3: 352*352 基础网络 需要33ms,cpu需要900ms
tiny yolov3 gpu 需要6ms左右,cpu需要145ms ,约60层
返回特征:torch.Size([1, 18, 11, 11]) torch.Size([1, 18, 22, 22])
faceboxes gpu 13ms,cpu需要39ms
tx2:
8 416 227ms
1 416 30ms
输出:
1 255 13 13
1 255 26 26
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import datetime
def Conv_3x3(in_channels, out_channels, stride):
return nn.Sequential(
nn.Conv2d(in_channels, out