MnasNet 测试

MnasNet是一种针对移动设备的CNN模型,通过神经网络结构搜索(NAS)方法,优化准确率与运行速度的平衡。相比MobileNet V2,MnasNet在相同准确率下速度提升1.5倍,且比NASNet快2.4倍。文章介绍了MnasNet的搜索空间设计、总体流程和结构特点,展示了其在资源效率和性能上的优势。
摘要由CSDN通过智能技术生成

MnasNet:352 352 需要21ms,听说准确率比shuffle v2高  cpu 17需要600ms 

shuffle net V2 原版需要23ms,cpu需要200ms

改造 yolov3用: 需要30ms  cpu需要180ms 加上yolo层 230ms

yolo v3: 352*352 基础网络 需要33ms,cpu需要900ms

tiny yolov3 gpu 需要6ms左右,cpu需要145ms ,约60层

返回特征:torch.Size([1, 18, 11, 11]) torch.Size([1, 18, 22, 22])

faceboxes gpu 13ms,cpu需要39ms

tx2:

8 416 227ms

1 416 30ms

 

输出:

1 255 13 13
1 255 26 26 

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import datetime


def Conv_3x3(in_channels, out_channels, stride):
    return nn.Sequential(
        nn.Conv2d(in_channels, out
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值