pytorch 查看gpu cuda版本

本文介绍了如何使用nvcc命令检查CUDA版本,以及如何查看Python、PyTorch、CuDNN和Visual Studio的相关信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

import torch

print(torch.version.cuda)

 

cuda版本查看: nvcc -V      9.0, V9.0.176

cudnn版本查看:

python版本查看:python -V     Python 3.6.8 :: Anaconda custom (64-bit)

cuda,cudnn,vs,python,pytorch
 

 

torch.cuda.is_available()
cuda是否可用;

torch.cuda.device_count()
返回gpu数量;

torch.cuda.get_device_name(0)
返回gpu名字,设备索引默认从0开始;

torch.cuda.current_device()
返回当前设备索引;

安装 PyTorch GPU 版本需要先安装 CUDA 和 cuDNN。以下是在 Ubuntu 20.04 上安装 PyTorch GPU 版本的步骤: 1. 安装 CUDA 11.7 可以从 NVIDIA 官网下载 CUDA Toolkit 11.7 的安装包,选择适合自己系统的版本进行下载,下载地址为:https://developer.nvidia.com/cuda-downloads 下载完成后执行以下命令进行安装: ``` sudo sh cuda_11.7.0_<version>_linux.run ``` 安装过程中需要选择安装路径,一般选择默认路径即可。 2. 安装 cuDNN 8.2.2 前往 NVIDIA 官网下载 cuDNN 8.2.2 的安装包,下载地址为:https://developer.nvidia.com/cudnn-download-survey 注册一个 NVIDIA 开发者账号后就可以下载了。 下载完成后解压文件,并将 cuDNN 目录下的文件复制到 CUDA 的安装目录下的对应文件夹中。 ``` cd <path_to_cudnn_folder> sudo cp -P include/cudnn*.h /usr/local/cuda-11.7/include sudo cp -P lib64/libcudnn* /usr/local/cuda-11.7/lib64/ sudo chmod a+r /usr/local/cuda-11.7/include/cudnn*.h /usr/local/cuda-11.7/lib64/libcudnn* ``` 3. 安装 PyTorch 推荐使用 Anaconda 或 Miniconda 进行安装。 先创建一个新的环境: ``` conda create --name pytorch_gpu python=3.9 conda activate pytorch_gpu ``` 然后安装 PyTorch: ``` conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch -c conda-forge ``` 安装完成后可以通过以下命令测试是否安装成功: ``` python -c "import torch; print(torch.cuda.is_available())" ``` 如果输出为 True,则说明安装成功。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值