yolov3剪枝

本文介绍了YOLOv3模型在实际应用中的优势,并分享了一个成功的YOLOv3剪枝GitHub项目,该剪枝方法使得模型参数量减少80%,FLOPs降低70%,同时推断速度提升100%,几乎不影响mAP。文章提供了剪枝前后的对比及所采用的网络瘦身算法来源。
摘要由CSDN通过智能技术生成

yolo v4

https://github.com/tanluren/yolov3-channel-and-layer-pruning

 

如果要在实际应用中部署目标检测,你会想到哪项算法?

 

在52CV目标检测交流群里,被提及最多的,恐怕就是YOLOv3了。

 

虽然新出的一些算法号称“完胜”“吊打”某某某算法,但YOLOv3 仍是被推荐最多的。

 

首先它有着目前为止还不错的精度表现,而且计算速度较快,适合在移动端、边缘设备部署。

 

 

 

 

另一个重要原因是,YOLOv3是被很多人使用验证过的模型,被某个数据库验证过的某算法精度好很重要,但被社区大量验证过效果OK的算法更重要。

 

今天向大家推荐一个Github新工程,对YOLOv3进行模型剪枝:


https://github.com/Lam1360/YOLOv3-model-pr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值