一张图带你看完图论第三章(包含定义、定理、公式、推导证明和例题)

3.1 割边、割点、块

  • 割边
    • 定义:去掉后连通分支数增加,且一定加一          ω(G-e)>ω(G)
      • 若G连通,则删去割边e后不连通           非平凡树每条边均为割边
    • 判定:e是割边 当且仅当 e不在任何圈中非割边一定在圈中,割边一定不在圈中
      • 因结论若在G的含e的连通分支中成立,则必在G中成立,所以我们不妨假定G连通证:1.必要性 设e=uv是图G的割边,若e含在圈C中,令P=C-e                     易知P是G-e中一条(u, v)路                     G-e中任意两个不同点x和y,因G连通,故G中存在(x, y)路Γ                     若Γ不含e,则Γ 也是G-e中一条(x, y)路                     若Γ含e,用P替换e后也可得到G-e中一条(x, y)路                     因此G-e一定连通,这与e是割边矛盾(连通分支数没有增加)所以e不在任何圈中
        • 2.充分性 (反证法)设e=uv,若e不是G的割边,则G-e仍连通              从而在G-e中存在(u, v) 路P,这样P+e便是G中含e的圈,              这与假设“e不在G的任何圈中”矛盾。
      • 推论:若e含在连通图G的某圈中,则G-e仍连通(删去圈中的边不会破坏图的连通性)
    • (高频考题)性质
      • 1.每个点度数都为偶数的图G,没有割边(欧拉图没有割边)
        • d(V)偶数→边集可以划分为边不重的圈的并→每条边都在圈中→G无割边
          • 法一:d(V)偶数→边集可以划分为边不重的圈的并用边集归纳假设:m=1 自环+孤立点                           假设m<k成立                           当m=k时,有非平凡连通分支H,最小度>=2,因此一定存在圈C                           删去圈得到G-C,那么剩下的满足假设,成立
          • 法二:反证法 设e=uv为G的割边G-e一定会产生新的连通分支,含有顶点u(或v)的那个分支中点u(或v)的度数必为奇数,而其余点的度数为偶数,与“度数为奇数的顶点的个数为偶数”相矛盾(分支中)
      • 2.K(k≥2)正则二部图G,没有割边
        • 反证法:设e=uv为G的割边假设G1为G-e的包含顶点u的连通分支,显然G1中除了点u的度数为k-1外,其余点的度数均为k显然G1仍为偶图,设其二部划分为S和T且|S|=s,|T|=t不妨假设S包含顶点u,则                            ks-1=|E(G1)|=kt但是因k≥2,所以等式不能成立!因此,e一定不是割边
    • 特殊图
      • 非平凡树每条边都是割边
  • 割点 1.自环处(一定还要连其他边)        2.删去会破坏连通性的点
    • 定义:边集能划分成两个非空边子集,且恰只有一个交点v,则v为割点          对于无环图,肯定只有第二种,但对于一般图,要考虑自环
    • 判定:①对无环连通图v是割点当且仅当V(G-v)可划分为两个非空顶点子集V1与V2,使得对任意的x∈V1,y∈V2,点v都在每一条(x,  y)路上v在剩下两部分点间的每条路上          ②v是G割点 当且仅当 v至少属于G中两个不同的块
      • 证:充分性(反证法)v在xy的每条路上→v是割点       若v不是图G的割点,那么G-v连通(不破坏连通性)       因此在G-v中存在(x, y)路,不经过v点,矛盾 必要性 v是割点→v在xy的每条路上       v是割点,G-v产生两个连通分支,每个分支顶点集为V1V2       任意的x∈V1,y∈V2,在G-v中x与y不连通(两个连通分支)       而在G中x与y连通,所以点v在图G的每一条(x, y)路上
    • 特殊图
      • 树的割点当且仅当d(v)>1(树上除了叶子都是割点)
    • 性质
      • 无环非平凡连通图至少有两个点不是割点(树)
        • 证:由于G是无环非平凡连通图,所以存在非平凡生成树   非平凡生成树至少两片树叶,它们不能为生成树的割点   显然,它们也不能为G的割点(因为树是边最少的连通)
      • 恰有两个非割点的连通简单图是一条路
        • 证:设T是n阶连通简单图G的任意一棵生成树G有n-2个割点,所以T也有n-2个割点所以T是一条路(树上不是割点只能是叶子点,恰有两个叶子点是路)一个简单图的任意生成树为路,则该图为圈或路若为圈,则G没有割点,矛盾!所以G为路
      • 若v是简单图G的割点,则v不是补图的割点
        • 证:v是G割点,则G-v一定不连通,则G-v补图连通      所以G补图中删去v不影响连通性,v不是G的补图的割点
      • (图与子图割点关系)无环连通图的割点,一定是,连通生成子图的割点                                  ..子图非割点一定是..图非割点(除此外都是错的)
    • 定义:块图:没有割点的连通图称为块    图的块:若G的子图B是块,且G中没有真包含B的子图也是块,则B是G的块    (G中没有割点的极大连通子图)
    • 必记的块:(常考!)      1.一个点的块  自环or孤立点      2.一条边的块  自环or割边K2      3.至少2点的块  无环      4.至少3点的块 无环+无割边+无割点 "三无" 一定有圈
      • 孤立点不是割点,但孤立点是一个连通分支点可以作为一个块,可以作为一个强连通分支(有向图中考)
    • 判定:阶数至少为3!!!①(点刻画)G是块 当且仅当 G无环且任意两点在同一圈上②(边刻画)G是块 当且仅当 G无孤立点且任意两边在同一圈上
      • 证1 充分性:G任意两点在一圈且无环→G无割点是块                  显然G连通,设v是任意一点,xy是v之外任意两点                  xy在同一圈上—xy间至少两条不相交的路                  删去v至多破坏xy间一条路,故v不是割点                  又G无环(一类割点),所以G是块
        • 必要性:G无割点是块→G任意两点在一圈且无环              G中显然无环,不然存在割点(一类)(对两点距离归纳假设)证G任意两点u、v在同一圈上              对距离d(u, v)作归纳d(u, v)=1时,因为G是至少3阶,所以uv不能为割边,又割边性质得uv必在某圈中              假设结论对任意两点d(u, v)<k成立d(u, v)=k时,设w是v前面一点,则d(u, w)=k-1,由假设知uw在同一圈C上              若v也在C上,则结论可证。下面讨论v不在C上              因G是块,无割点,G-w仍连通              设存在一条(u,v)路Q,x是Q与C最后一个公共点,以x为界划分C1C2              则C1→Q的xv段→vw→C2的wu段 构成一个圈C*,且u与v均在C*上            (总能找到一个圈使uv都在圈上)
      • 证2 (转成点刻画)G任意两条边在同一圈且无孤立点→G无割点是块         因为环和任何边都不在一个圈上,所以G无环         又任意两边在同一圈上,必然任意两点在同一圈上,故G是块
        • 必要性:G是块→G任意两边在同一圈且无孤立点              G是块(n>=3),显然无孤立点(孤立点是个连通分支)              任取G中两条边e1和e2,插入新顶点v1和v2,得图G*              G中删去e1e2=G*中删去v1v2              由于G是n>=3的块,无割边,              所以删去e1e2不改变G连通性=删v1v2不改变G*连通性              所以v1v2不是G*割点,所以v1v2间必然存在两条以上路              →v1v2在圈上→e1e2在圈上
    • 性质
      • 1.v是G割点 当且仅当 v至少属于G中两个不同的块
        • 证 必要性:割点→v至少属于G中两不同块              割点定义知E(G)可以划分为两个边子集E1与E2              使G[E1]与G[E2]有唯一公共顶点v        设B1与B2分别是G[E1]和G[E2]中包含v的块(极大连通子图)        显然B1B2也属于G,因此v属于G两不同块
          • 证 充分性:v至少属于G中两不同块→割点               设v属于两不同块B1B2,若其中一个是环,显然v是割点               若B1B2都不是环,因为B1B2是块,所以至少2个顶点               在B1B2中分别找异于v的点xy,则G-v中任存在(x,y)路P               则B1∪B2∪P 无割点,成为一个更大的块,与B1B2是G不同的块矛盾
      • **根据割点找块!块与块只通过割点连接!不同块间公共顶点是割点
    • (了解) G的块割点树bc(G)
      • 顶点是G的块和割点边uv仅当一个是割点一个是割点连接的块
  • 提“割边” → 想K2提“割点” → 想子环提“块” → 想阶数至少为3(有无这个条件)提“割边与割点关系” → K2 + 8字图(很多不成立)n>=3的无环连通图,割边处一定有割点!有割点不一定有割边
    • 题目一a完全图一定无割边 b完全图一定无割点c非平凡树一定有割边 d非平凡树一定有割点
      • bc对ad错K2
    • 题目二 简单图中a有割边一定有割点 b有割点一定有割边
      • a错K2b错8字图
    • 题目三 G为块a一定无环 b一定有圈 c一定无割点 d一定无割边
      • a错-n=1块是子环 m=1块是子环或K2b错-点数或边数为1c对-块的定义d错-K2
    • 题目四 G为块且n>=3a一定无环 b一定有圈 c一定无割点 d一定无割边
      • abcd都对n>=3的块 三无!!!!又因为无割边,非割边一定在圈中
  • 图的连通度-删边还是删点变得不通?                  删多少边/点变得不通?                  删什么样的边/点不通?
  • 3.2 连通度
  • 自环不影响连通性,故只讨论无环图
    • 连通度κ(G)
      • 点割(一个顶点子集)V’是G的顶点子集且G-V’后不连通,则成V为G的顶点割(点割)点数的最少点割成为最小点割(删最少的点使G不连通,这些删去的点组成最小点割)
        • 1点割=割点
        • 没有点割=任意两点都相邻=生成子图为完全图的图(包含完全图)
      • 点连通度 =最小点割包含点数              或 n-1(包含完全图没有点割的图)
        • 非连通图/平凡图κ(G)=0
      • 使图变不连通或平凡,最少需要删去点数
    • K连通
      • 图的连通度至少为K(κ(G)>=K),则图为K连通至少删去k个点才有不连通的可能/变成平凡图的可能
        • 越大越严格(与L部图相反)K连通图一定K-1连通,所有非平凡连通图都是1连通 κ(G)>=1
      • 2连通一定至少3顶点!无割点!2连通→最小度≥2→至少3顶点,所有边都在圈中,无割边。若有割点,那就是1连通
    • 边连通度λ(G)
      • 边割(一个边子集)使G-E ′不连通的G的边子集E ′为G的边割边数最少的边割称为最小边割
        • 1边割=割边
      • 边连通度=最小边割包含边数
        • 非连通图/平凡图λ(G)=0
      • 使图不连通或平凡最少要删去的边数
    • K边连通
      • 至少删去K条边才有可能不连通/变成平凡图
    • 性质
      • κ(G)≤λ(G)≤δ(G)点连通度≤边连通度≤最小度
        • 将最小度点的边都删了一定孤立
      • 用握手定理,最小度向下放缩或是平均度大于最小度大于点连通度
        • k连通图 m>=[kn/2] (向上取整)k连通图最少边数为kn/2
          • Harary图 Hk,n5连通8阶边数最少的图H5,8
      • 简单图若δ(G)≥[n/2](向下取整),则G必连通              δ(G)≥[n/2](向下取整),则λ(G)=δ(G)              δ(G)≥[n/2](向下取整),则G是H图(n≥3)
        • 反证法:若不连通,G至少有两个连通分支,必有一个分支H顶点数小于[n/2](向下取整)这个分支最大度一定小于n/2-1,这个分支最小度<分支最大度<n/2-1图最小度<分支最小度<分支最大度<n/2-1,与条件矛盾,即证最小度>n/2时G连通
        • 反证法:若λ(G)≠δ(G),则λ(G)<δ(G)G中存在边割M,|M|=λ(G)<δ(G) ,G-M是由两个不相交的子图G1和G2所构成
  • 点连通度
    • 二部图
      • 非平凡树
        • 1(树上除叶子点外都是割点)
      • K正则二部图
      • 完全二部图
      • 超立方体
        • n(n正则图)
      • 1(n=2)
        • 变得不连通或者平凡
      • 2(n>=3)
    • 完全图
      • n-1
    • 非连通图/平凡图
      • 0
  • 点连通
    • 1连通
      • n>=2的连通图(所有非平凡连通图)
    • 2连通
      • n>=3+1连通+无割点(不含k2)
    • K连通(点连通度>=k)
      • 至少删去k个点才有可能不连通,删去<k点一定还连通
  • 边连通度
    • 二部图
      • 非平凡树
        • 1(树上都是割边)
      • K正则二部图
      • 完全二部图
      • 超立方体
        • n
      • 2(n>=2)
    • 完全图
      • n-1(把它周围所有边删掉)
  • 边连通
    • 1边连通
      • n>=2的连通图(所有非平凡连通图)
    • 2边连通
      • n>=2+1连通+无割边(不含K2)
    • K连通(边连通度>=k)
      • 删去边<k,不破坏连通性
  • 点割不一定存在(包含完全图的)边割一定存在
  • Menger定理
    • 两条(x,y)路被称为内部不相交或独立的,仅当两条路只有x、y是公共点分离xy,指通过删边/点使不存在xy路
    • xy不相邻,分离xy最少点数=独立xy路最大数
      • 非平凡图K连通 = 任意两不同点 至少存在K条独立路(K>=2)
    • xy不同点,分离xy最少边数=边不重xy路最大数
      • 非平凡图是K边连通 = 任意两不同点 至少存在K条边不重的路(K>=2)
  • G是2连通无环图 = G无环且任意两点在同一圈上 = G无孤立点且任意两边在同一圈上
  • 3.4图的宽距离和宽直径
    • 宽距离
      • x-y容器Cw(x,y):G中w条独立(x,y)路构成的路族w为容器宽度L为容器长度,Cw(x,y)中最长路的长度
      • w宽距离dw(x , y):xy所有w宽容器的长度的最小值
      • xy间找w条独立路成为一个方案,方案中最长路为该方案的长度所有取w条独立路的方案长度中,最短长度=xy的w宽距离
        • 1宽距离=距离
    • 宽直径
      • G是w连通的(任意两点至少存在w条独立路)G所有点对w宽距离最大值=G的w宽直径dw(G)
        • 1宽直径=直径=最短路的最大值
        • K连通图一定K-1连通----K-1宽直径....1宽直径一定都存在
    • 例题:先求1宽距离---(找任意两点间最短路)---再求G1宽直径---最短路的最大值先求2宽距离---(xy间2条独立路的所有方案,方案中最长路为该方案的长度)---求所有方案的长度中最小值(2宽距离)---再求G2宽直径---所有点对2宽距离最大值任意两点xy所有2宽容器,某容器中最长路max(容器的长度),再所有容器长度min(xy-2宽距离)再所有点对2宽距离max(G-2宽直径)
      • 圈1宽距离:任意两点最短路--1~[n/2](向下取整)1宽直径:最短路的最大值--[n/2](向下取整)
        • 2宽距离:[n/2](向上取整)~n-1 任意两点找两条路(容器),路最长值(容器长度),所有容器长度的最小值(2宽距离),所有点对2宽距离的最大值(2宽直径)n-1
      • 完全图1宽距离:(最短路范围)11宽直径:(范围最大值)1
        • 2宽距离:22宽直径:2n-1宽直径都为2
    • 1宽直径最小,依次递增
    • w宽直径最小为2,最大n-w+1(w阶连通)

反证法:若λ(G)≠δ(G),则λ(G)<δ(G)G中存在边割M,|M|=λ(G)<δ(G) ,G-M是由两个不相交的子图G1和G2所构成


用握手定理,最小度向下放缩或是平均度大于最小度大于点连通度


1宽直径最小,依次递增


必要性:G是块→G任意两边在同一圈且无孤立点              G是块(n>=3),显然无孤立点(孤立点是个连通分支)              任取G中两条边e1和e2,插入新顶点v1和v2,得图G*              G中删去e1e2=G*中删去v1v2              由于G是n>=3的块,无割边,              所以删去e1e2不改变G连通性=删v1v2不改变G*连通性              所以v1v2不是G*割点,所以v1v2间必然存在两条以上路              →v1v2在圈上→e1e2在圈上


 

  • 10
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值