图论的一些简单命题的证明

Proposition 1
如果 G G G是简单图,那么:
ϵ ( G ) ⩽ { v ( v − 1 ) , if  v  is directed . 1 2 v ( v − 1 ) , if  v  is undirected . \epsilon(G)\leqslant \left\{\begin{array}{ll} \displaystyle v(v-1)&,\text{if }v \text{ is directed}.\\ \displaystyle \frac{1}{2}v(v-1)&,\text{if }v \text{ is undirected}.\\ \end{array}\right. ϵ(G){ v(v1)21v(v1),if v is directed.,if v is undirected.
证明:由度数等式且:
2 ϵ ( G ) ⩽ { ∑ x ∈ V ( d G + ( x ) + d G − ( x ) ) , if  v  is directed . ∑ x ∈ V d G ( x ) , if  v  is undirected . 2\epsilon(G)\leqslant \left\{\begin{array}{ll} \displaystyle \sum_{x\in V}(d_G^{+}(x)+d_G^{-}(x))&,\text{if }v \text{ is directed}.\\ \displaystyle \sum_{x\in V}d_G(x)&,\text{if }v \text{ is undirected}.\\ \end{array}\right. 2ϵ(G)xV(dG+(x)+dG(x))xVdG(x),if v is directed.,if v is undirected.
∀ x ∈ V , d G + ( x ) = d G − ( x ) = v − 1  or  d G ( x ) = v − 1 \forall x\in V,d_G^+(x)=d_G^-(x)=v-1\text{ or }d_G(x)=v-1 xV,dG+(x)=dG(x)=v1 or dG(x)=v1即可.

Proposition 2

记号 D v \mathscr{D}_v Dv G v \mathscr{G}_v Gv分别表示简单有向图和简单无向图中所有不同 v v v阶图(所有顶点有不同标号)的数量,那么:

(a) D v = 2 v ( v − 1 ) \mathscr{D}_v=2^{v(v-1)} Dv=2v(v1);

(b) G v = 2 v ( v − 1 ) / 2 \mathscr{G}_v=2^{v(v-1)/2} Gv=2v(v1)/2.

证明:根据命题,每一个度是否计入对应同构图中唯一一条边的有无,因此命题成立.

Proposition 3
证明一个简单无向图 G G G 2 ϵ 2^{\epsilon} 2ϵ种不同的定向图 .
证明:每一个无向边有 u → v u\to v uv和​ v → u v\to u vu两种不同的方向的取法,所以命题成立.
Proposition 4
如果​ G ≅ H G\cong H GH,那么:
v ( G ) = v ( H ) ∧ ϵ ( G ) = ϵ ( H ) v(G)=v(H)\wedge \epsilon(G)=\epsilon(H) v(G)=v(H)ϵ(G)=ϵ(H)
证明:
因为 f f f V G , V H V_G,V_H VG,VH之间的双射,所以 v ( G ) = v ( H ) v(G)=v(H) v(G)=v(H).因为 f f f诱导出一个 E G E_G EG E H E_H EH间的双射,所以 ϵ ( G ) = ϵ ( H ) \epsilon(G)=\epsilon(H) ϵ(G)=ϵ(H).

Proposition 5
ϵ ( G ) ⩽ { 1 4 v 2 , if  v  is even . 1 4 ( v 2 − 1 ) , if  v  is odd . \epsilon(G)\leqslant \left\{\begin{array}{ll} \displaystyle \frac{1}{4}v^2&,\text{if }v \text{ is even}.\\ \displaystyle \frac{1}{4}(v^2-1)&,\text{if }v \text{ is odd}.\\ \end{array}\right. ϵ(G)41v241(v21),if v is even.,if v is odd.
证明:
设二分图有二分集 { x 1 , x 2 , … , x m } , { y 1 , y 2 , … , y n } \{x_1,x_2,\dots,x_m\},\{y_1,y_2,\dots,y_n\} { x1,x2,,xm},{ y1,y2,,yn}那么 d G ( x 1 ) = d G ( x 2 ) = ⋯ = d G ( x m ) = n , d G ( y 1 ) = d G ( y 2 ) = ⋯ = d G ( y n ) = m d_G(x_1)=d_G(x_2)=\dots=d_G(x_m)=n,d_G(y_1)=d_G(y_2)=\dots=d_G(y_n)=m dG(x1)=dG(x2)==dG(xm)=n,dG(y1)=dG(y2)==dG(yn)=m,所以 ϵ ( K m , n ) = 1 2 ∑ x ∈ G d G ( x ) = 1 2 ( m n + n m ) = m n \epsilon(K_{m,n})=\displaystyle \frac{1}{2}\sum_{x\in G}d_G(x)=\frac{1}{2}(mn+nm)=mn ϵ(Km,n)=21xGdG(x)=21(mn+nm)=mn.
根据均值不等式:
ϵ ( G ) ⩽ ( m + n 2 ) 2 = 1 4 v 2 \epsilon(G)\leqslant (\frac{m+n}{2})^2=\frac{1}{4}v^2 ϵ(G)(2m+n)2=41v2
v v v是偶数,该不等式严格成立,若 v v v是奇数,则显然不等式不严格成立.
所以:
ϵ ( G ) ⩽ ⌊ 1 4 ( v 2 − 1 ) + 1 4 ⌋ = 1 4 ( v 2 − 1 ) \epsilon(G)\leqslant \lfloor \frac{1}{4}(v^2-1)+\frac{1}{4}\rfloor=\frac{1}{4}(v^2-1) ϵ(G)41(v21)+41=41(v21)
Proposition 6
H ( n , k , i ) H(n,k,i) H(n,k,i) J ( n , k , i ) J(n,k,i) J(n,k,i)分别如定义所示 .那么:
H ( n , k , 2 k − 2 i ) ≅ J ( n , k , i ) H(n,k,2k-2i)\cong J(n,k,i) H(n,k,2k2i)J(n,k,i)
证明:
因为 ∀ x y ∈ E H ( n , k , 2 k − 2 i ) \forall xy\in E_{H(n,k,2k-2i)} xyE

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值