欢迎关注我的新公众号:倒三角冲浪家
在此更新力学、工程类交叉学科等最新文献,以及其他趣味题材文章
【摘要】
人工智能被用于多层圆柱纳米棒的光子学逆设计,这些纳米棒在散射可见光时展现出极高的偏振选择性。通过一个神经网络获得了最优配置,该网络的训练数据集仅包含性能显著较低的设计。所报道的纳米棒可集成到片上系统中,在从超高效传感与成像,到安全光通信和锐化滤波等广泛的光学应用领域发挥作用。
(全连接神经网络及数据集)
【引言】
光子学逆设计致力于挑选恰当的材料和光源,以使光子学系统的输出契合预期目标。人工智能在解决各类逆问题上成果颇丰,在光子学逆设计领域也备受瞩目。鉴于电磁场的矢量特性,偏振转换相关研究层出不穷。本文借助神经网络开展逆设计工作,着力探寻具备高偏振选择性的电磁结构。
(不同学习率以及随机失活率神经网络的均方根)
【方法】
针对多层圆柱散射体在平面波照射下的电磁散射现象展开研究,运用 Mie 理论来计算散射功率,并定义了相对散射功率、偏振对比度函数 A 以及总功率 G。采用全连接神经网络来处理这一逆问题,其输入源自散射功率相关的指标数据,输出则是圆柱层的厚度参数。通过最小化均方误差损失函数来确定网络的权重,同时运用 Adam 优化器等技术助力训练过程,并对数据集进行精心筛选。
【结果】
在神经网络完成收敛后,对不同超参数组合下网络预测的粒子偏振对比度展开研究。研究结果显示,网络所给出的偏振对比度优于训练数据集中的最佳样本,部分最优设计在对不同偏振光的散射表现上差异显著。此外,还深入分析了层厚度对偏振对比度的影响,明确了核心直径在散射响应中起着关键作用。
(不同参数神经网络的极化对比情况)
【结论】
利用人工智能成功实现了多层纳米棒的光子学逆设计,所获得的设计在偏振选择性方面远超数据集中的最佳样本,具备在集成光学系统中广泛应用的潜力。后续研究可通过采用活性介质、将纳米棒放置于特定背景环境等方式展开进一步拓展。
(数据集示意图、各层厚度的偏振对比度分数 )
【创新点】
研究聚焦的电磁相互作用系统具有正问题易解但逆问题极具挑战的特点,呈现出独特的复杂性;神经网络的输入指标融合了两种边界值问题的数据,并经过了预处理,数据集也经过了筛选、插值和过采样等操作;实现了偏振对比度的显著提升。
原文链接:https://doi.org/10.1364/JOSAB.545930
期刊:Journal of the Optical Society of America B