Differentiation Rules

Differentiation Rules

1. The Sum Rule

In calculus, the sum rule in differentiation is a method of finding the derivative of a function that is the sum of two other functions for which derivatives exist.[1]

Given: h(x)=f(x)+g(x)

Proofs: h(x)=f(x)+g(x)

h(x)=limΔx0h(x+Δx)h(x)Δx=limΔx0f(x+Δx)+g(x+Δx)f(x)g(x)Δx=limΔx0f(x+Δx)f(x)+g(x+Δx)g(x)Δx=limΔx0f(x+Δx)f(x)Δx+g(x+Δx)g(x)Δx=f(x)+g(x)

2. The Product Rule

In calculus, the product rule is a formula used to find the derivatives of products of two or more functions.[2]

Given: h(x)=f(x)g(x)

Proofs: h(x)=f(x)g(x)+f(x)g(x)

h(x)=limΔx0h(x+Δx)h(x)Δx=limΔx0f(x+Δx)g(x+Δx)f(x)g(x)Δx=limΔx0f(x+Δx)g(x+Δx)[f(x)g(x+Δx)+f(x)g(x+Δx)]f(x)g(x)Δx=limΔx0[f(x+Δx)f(x)]g(x+Δx)+f(x)[g(x+Δx)g(x)]Δx=limΔx0f(x+Δx)f(x)ΔxlimΔx0g(x+Δx)+limΔx0f(x+Δx)limΔx0g(x+Δx)g(x)Δx=f(x)g(x)+f(x)g(x)

3. The Quotient Rule

In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions.[3]

Given: h(x)=f(x)g(x)

Proofs: h(x)=f(x)g(x)f(x)g(x)g(x)2

h(x)=limΔx0h(x+Δx)h(x)Δx=limΔx0f(x+Δx)g(x+Δx)f(x)g(x)Δx=limΔx0f(x+Δx)g(x)f(x)g(x+Δx)Δxg(x)g(x+Δx)=limΔx0f(x+Δx)g(x)f(x)g(x+Δx)Δx1g(x)g(x+Δx)=[limΔx0f(x+Δx)f(x)ΔxlimΔx0g(x)limΔx0f(x)limΔx0g(x+Δx)g(x)Δx]1g(x)2=f(x)g(x)f(x)g(x)g(x)2

Reference

[1] Wikipedia-Sum rule in differentiation

[2] Wikipedia-Product rule

[3] Wikipedia-Quotient_rule



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值