Differentiation Rules
1. The Sum Rule
In calculus, the sum rule in differentiation is a method of finding the derivative of a function that is the sum of two other functions for which derivatives exist.[1]
Given: h(x)=f(x)+g(x)
Proofs: h′(x)=f′(x)+g′(x)
2. The Product Rule
In calculus, the product rule is a formula used to find the derivatives of products of two or more functions.[2]
Given: h(x)=f(x)⋅g(x)
Proofs: h′(x)=f′(x)g(x)+f(x)g′(x)
3. The Quotient Rule
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions.[3]
Given: h(x)=f(x)g(x)
Proofs: h′(x)=f′(x)g(x)−f(x)g′(x)g(x)2
Reference
[1] Wikipedia-Sum rule in differentiation