分水岭算法
使用分水岭算法进行图像分割
步骤:
(一)获取灰度图像,二值化图像,进行形态学操作,消除噪点
(二)在距离变换前加上一步操作:通过对上面形态学去噪点后的图像,进行膨胀操作,可以得到大部分都是背景的区域(原黑色不是我们需要的部分是背景)
(三)使用距离变换distanceTransform获取确定的前景色
相关知识补充(重点)
(四)在获取了背景区域和前景区域(其实前景区域是我们的种子,我们将从这里进行灌水,向四周涨水,但是这个需要在markers中表示)后,这两个区域中有未重合部分(注1)怎么办?首先确定这些区域(寻找种子)
开始获取未知区域unknown(栅栏会创建在这一区域),为下一步获取种子做准备
(五)获取了这些区域,我们可以获取种子,这是通过connectedComponents实现,获取masker标签,确定的前景区域会在其中显示为以1开始的数据,这就是我们的种子,会从这里开始漫水
重点:
(六)根据未知区域unknown在markers中设置栅栏,并将背景区域加入种子区域,一起漫水
(七)根据种子开始漫水,让水漫起来找到最后的漫出点(栅栏边界),越过这个点后各个山谷中水开始合并。注意watershed会将找到的栅栏在markers中设置为-1
距离变换
distanceTransform :参数
src:输入的图像,一般为二值图像
distanceType:所用的求解距离的类型,有CV_DIST_L1, CV_DIST_L2 , or CV_DIST_C
mask_size:距离变换掩模的大小,可以是 3 或 5. 对 CV_DIST_L1 或 CV_DIST_C 的情况,参数值被强制设定为 3, 因为 3×3 mask 给出 5×5 mask 一样的结果,而且速度还更快。
距离变换的处理图像通常都是二值图像,而二值图像其实就是把图像分为两部分,即背景和物体两部分,物体通常又称为前景目标!
通常我们把前景目标的灰度值设为255,即白色
背景的灰度值设为0,即黑色。
所以定义中的非零像素点即为前景目标,零像素点即为背景。
所以图像中前景目标中的像素点距离背景越远,那么距离就越大,如果我们用这个距离值替换像素值,那么新生成的图像中这个点越亮。
代码实现:
import cv2 as cv
import numpy as np
#分水岭算法
def watershed_demo():
# remove noise if any
print(src.shape)
#边缘保留滤波
blurred = cv.pyrMeanShiftFiltering(src, 10, 100)
# gray\binary image
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
cv.imshow("binary-image", binary)
# morphology operation:形态学操作
# 结构元素
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
#开操作 #iterations连续两次开操作
mb = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel, iterations=2)
#iterations=3 :3次膨胀,可以获取到大部分都是背景的区域
sure_bg = cv.dilate(mb, kernel, iterations=3)
cv.imshow("mor-opt", sure_bg)
# distance transform :距离变换 cv.DIST_L1:棋盘格局里 DIST_L2:欧几里距离 3:掩模移动距离
dist = cv.distanceTransform(mb, cv.DIST_L2, 3)#获取距离数据结果
#normalize:归一化 因为distanceTransform返回的图像数据是浮点数值,要想在浮点数表示的颜色空间中,数值范围必须是0-1.0,所以要将其中的数值进行归一化处理
#(重点)在整数表示的颜色空间中,数值范围是0-255,但在浮点数表示的颜色空间中,数值范围是0-1.0,所以要把0-255归一化。
dist_output = cv.normalize(dist, 0, 1.0, cv.NORM_MINMAX)
cv.imshow("distance-t", dist_output*50)
#再通过设定合理的阈值对距离变换后的图像进行二值化处理,则可得到图像的几何中心
# 获取前景色
ret, surface = cv.threshold(dist, dist.max()*0.6, 255, cv.THRESH_BINARY)
##保持色彩空间一致才能进行运算,现在是背景空间为整型空间,前景为浮点型空间,所以进行转换
surface_fg = np.uint8(surface)
cv.imshow("surface-bin", surface_fg)
unknown = cv.subtract(sure_bg, surface_fg)
#连通区域
#ret是连通域处理的边缘条数,是上面提到的确定区域(出去背景外的其他确定区域:就是前景),就是种子数,我们会从种子开始向外涨水
#markers是我们创建的一个标签(一个与原图像大小相同,数据类型为 in32 的数组),其中包含有我们原图像的确认区域的数据(前景区域)
ret, markers = cv.connectedComponents(surface_fg)
# watershed transform :分水岭变换
"""现在知道了那些是背景那些是硬币(确定的前景区域)了。
那我们就可以创建标签(一个与原图像大小相同,数据类型为 in32 的数组),并标记其中的区域了。
对我们已经确定分类的区域(无论是前景还是背景)使用不同的正整数标记,对我们不确定的区域(unknown区域)使用 0 标记。
我们可以使用函数 cv2.connectedComponents()来做这件事。
它会把对标签进行操作,将背景标记为 0,其他的对象使用从 1 开始的正整数标记(其实这就是我们的种子,水漫时会从这里漫出)。然后将这个标签返回给我们markers
但是,我们知道如果背景标记为 0,那分水岭算法就会把它当成未知区域了。(我们要将未知区域标记为0,所以我们要将背景区域变为其他整数,例如+1)
所以我们想使用不同的整数标记它们。
而对不确定的区域(函数cv2.connectedComponents 输出的结果中使用 unknown 定义未知区域)标记为 0。"""
markers = markers + 1
markers[unknown==255] = 0
markers = cv.watershed(src, markers=markers)
src[markers==-1] = [0, 0, 255]
cv.imshow("result", src)
print("--------- Python OpenCV Tutorial ---------")
src = cv.imread("E:/ji_qi_xue_xi/opencv_kejian/opencv_python_image/coins.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image", src)
watershed_demo()
cv.waitKey(0)
cv.destroyAllWindows()