SOLIDWORKS「点击」和「双击」修改尺寸如何切换

本文介绍在SOLIDWORKS中修改草图尺寸的两种方法:双击尺寸修改和单击数字修改,以及如何通过Instant2D功能快速切换这两种修改方式,提升工作效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SOLIDWORKS修改草图尺寸一般用两种的方法,【双击】尺寸修改数值 和 【单击】数字修改数值,两种方法各有优缺点:

【双击】修改时:会弹出一个修改窗口,比较直观,还带有一些其他功能;但如果仅仅是修改尺寸的话,这一步会影响操作速度,显得有点鸡肋。

【单击】修改时:速度会有所提高;但有时候我只是想拖动一下标注的位置,并不想修改尺寸,可能会出现误操作的情况。

演示过程

1.在绘制草图的过程中,如果要修改一个尺寸,一般情况下要【双击】这个标注,这时会弹出【修改】窗口,输入数字才能修改该尺寸。

2.还有一种情况是:只需要【点中】这个数字,就可以直接修改尺寸。没有了弹出窗口这一步,速度大大提高。

3.那该怎么切换呢?非常简单:打开【Instant2D】就是【单击】;关闭【Instant2D】就是【双击】 。

 

4.用GIF动图演示一下:

 

更多SOLIDWORKS资讯,请关注数领科技

<think>好的,我现在需要回答用户关于哈希表、补数间复杂度的三个问题。用户之前询问过两数之的代码解释,现在可能是在进一步理解其中的概念。我需要确保解释清晰,并且适合不同知识水平的读者。 首先,哈希表。哈希表是数据结构中的一种,用于存储键值对。我需要解释它的基本结构,比如通过哈希函数将键映射到存储位置,这样查找、插入删除操作的间复杂度可以接近O(1)。可能用户对哈希冲突不太了解,但暂不需要深入,只需提到它是通过数组链表(或开放寻址)处理冲突即可。例子可以用字典或者现实中的例子,比如电话簿,名字作为键,号码作为值,这样用户容易理解。 接下来是补数。在之前的代码中,补数指的是目标值减去当前元素后的值。需要明确补数在这里的具体应用场景,即当遍历数组,计算补数并在哈希表中查找是否存在,如果存在则找到两数之的解。可能需要用例子说明,比如目标为9,当前元素是2,补数就是7,如果在哈希表中找到7,则返回两者的索引。需要注意的是补数在不同领域可能有不同含义,比如数学中的补数可能指数字的补集,但在这里是特定于算法的术语,避免混淆。 最后是间复杂度。用户可能对算法效率感兴趣。需要解释间复杂度是衡量算法执行间随输入规模增长的变化趋势。常见的有O(1)、O(n)、O(n²)等。在之前的代码中,哈希表的使用将间复杂度从暴力法的O(n²)降到了O(n)。要举例说明,比如遍历数组是O(n),每次查找哈希表是O(1),所以总体是O(n)。可能需要对比不同间复杂度对应的性能,帮助用户理解优化的重要性。 还需要考虑用户可能的疑问点。例如,哈希表为什么查找快?可能需要简单提及哈希函数的作用,但不过于深入技术细节。补数是否可能重复?在代码中如何处理,比如先查找再存储当前元素,避免自身重复匹配。间复杂度的计算是否包括所有操作?比如哈希表的插入查找是否影响整体复杂度,需要确认这些操作的平均情况是O(1),所以总体保持O(n)。 另外,用户可能对这三个概念之间的联系感兴趣,特别是在两数之问题中的应用。需要将三者结合起来说明,哈希表用于高效查找补数,从而降低间复杂度。这样用户能理解为什么使用这些概念来优化算法。 最后,要确保语言通俗易懂,避免过多术语,必要使用比喻或例子。检查是否有遗漏或解释不清的地方,确保每个概念都解释到位,并回答用户潜在的问题。</think>以下是针对您问题的分步解释: ### 一、哈希表(Hash Table) **定义**:哈希表是一种高效的数据结构,通过键值对(key-value)形式存储数据。它的核心机制是通过哈希函数(hash function)将键(key)映射到数组的特定位置。 **工作原理**: 1. 插入数据:用哈希函数计算键的哈希值 → 确定存储位置 2. 查找数据:再次计算键的哈希值 → 直接访问对应位置 **特点**: - 平均间复杂度:查找/插入/删除均为 `O(1)` - 冲突处理:当不同键产生相同哈希值,使用链表或开放寻址法解决 **示例**: ```python # 电话号码簿(哈希表实现) phonebook = {} phonebook["Alice"] = "138-1234-5678" # 插入 print(phonebook["Alice"]) # 查找 ``` --- ### 二、补数(Complement) **在算法中的定义**:指使当前元素与补数相加等于目标值的那个数。 **数学表达式**: `补数 = target - current_value` **应用场景**: 在两数之问题中,通过计算当前值的补数,可以快速判断是否已存在符合条件的数。 **示例**: ```text 数组:[2, 7, 11, 15],目标值:9 当遍历到元素2: 补数 = 9 - 2 = 7 检查哈希表中是否存在7 → 找到则返回结果 ``` --- ### 三、间复杂度(Time Complexity) **定义**:描述算法运行间与输入规模之间的增长关系,使用大O符号表示。 **常见类型**: | 复杂度 | 特征 | 典型算法 | |----------|--------------------------|-----------------------| | O(1) | 恒定间 | 哈希表查询 | | O(n) | 线性增长 | 数组遍历 | | O(n²) | 平方级增长 | 暴力嵌套循环 | | O(log n) | 对数增长(效率极高) | 二分查找 | **对比示例**: ```text 输入规模 n=10000 : - O(1) 算法:1次操作 - O(n) 算法:约1万次操作 - O(n²) 算法:约1亿次操作 ``` --- ### 三者关系图解 ```text 两数之问题优化过程: 暴力解法 O(n²) → 哈希表优化 O(n) ↑ ↑ 间复杂度分析 哈希表快速查找补数 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值