为了搞定这个也是煞费苦心那,折腾了几天还好网上教程挺多,不过也要写下我的安装过程给大家参考。
准备:
1、vs2013
2、cuda8.0
3、cudnn5.1
第一个上官网去下载很快。头疼的是后两个,一个下载到一半就没速度了,下载了很久很久,另外一个需要注册,有需要的到网盘上,http://pan.baidu.com/s/1i4Le1Qd 密码:ldsd
默认大家先安装了python3.5.2,首先安装pip install tensorflow,其次安装pip install tensorflow-gpu,这个过程是很简单的。
比较坑的地方在于,一定要先安装vs2013,再安装cuda8.0,错了vs就无法加载cuda samples。安装要有耐心,耐心,耐心,这两个装起来要老半天了。
cuda8.0安装的时候选择自定义,而不是精简模式,否则会省略掉一些重要组件。
vs用压缩文件打开,解压后默认安装下来没有问题,不过安装的时候可能会提示需要找到某个组件的位置,组件一般是有的但不知道为什么需要手动确认,搜一搜地址,打开浏览,点击那个文件就可以了。
安装之后,利用vs编译cuda samples。首先打开C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\1_Utilities,里面的bandwidthTest和deviceQuery文件夹下分别有以文件夹命名的sln文件,右键vs2013打开。如果加载失败,十有八九就是因为上述两个软件安装顺序错了,注意注意。话说我从没用过vs2013,一开始网上说在release中打开懵逼了很久,后来发现在菜单栏下有一个debug下拉菜单,拉下来就是release。然而我还是不懂这两个是干什么的...总之选中release,之后在右边项目那里右键-生成,就会发现在C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\bin\win64\Release目录下面多了几个文件。打开cmd,cd到该路径下面,输入deviceQuery.exe ,然后回车。bandwidthTest同理操作。
至此cuda和vs2013完成任务,之后再解压cudnn5.1文件夹,将其三个文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0,注意此文件夹是在program files下而不是programdata下。
现在可以测试一下:
cmd打开python,输入以下代码:
import tensorflow as tf
sess=tf.Session()
如果出现found device 0 with properties则说明加载gpu成功,如果出现NO_DEVICE_ERROR,则是因为vs编译没有到位,或者编译之后没有在cmd中运行一遍deviceQuery.exe。出现设备不可移动和不可拔出的错误,是因为驱动程序出现错误,此时应该下载相应的图形驱动,网上说往旧版本下载,这句话误了我几天,我一路下载一路出错,最后一冲动装了个最新的,竟然成功了。另外如果出现UNKOWN_ERROR,则参考https://github.com/tensorflow/tensorflow/issues/5968。
如果还有其他错误,可以重新安装一遍cuda试试,再重复下面的步骤。另外,我也试着安装了下cuda7.5,可以检测到显卡驱动但是里面缺少组件,提示 Couldn't open CUDA library cublas64_80.dll,电脑确实怎么也搜不到。网上说重新安装tensorflow,我装了一遍连gpu都检测不出来了,自动切换了cpu,不知道是不是我自己个电脑的问题。最后无法又改换了cuda8.0。我来来回回也算安装卸载了十来二十遍了,安装要耐心阿,之后可以测试一下这个代码:http://blog.csdn.net/phdat101/article/details/52403127,速度还是很快的。