从Java 8 到 Java 20,Java 已经走过了漫长的道路,自 Java 8 以来,Java 生态系统发生了很多变化。最显着的变化是 Java 的发布节奏。Java 8 于 2014 年发布,Java 17 于 2021 年发布。这两个版本之间相隔了 7 年。Java17是一个长期支持(LTS)的版本,会有更稳定和持久的维护和更新。
如果你和我一样,已经使用Java 8很长时间了,觉得需要了解一下Java的新特性,那么这篇文章就是为你准备的。
自从Java 8以来,Java增加了很多新特性,但并不是所有的特性都有用和受欢迎。所以我整理了一个列表,列出了自Java 8以来Java增加的最受开发者欢迎的特性,你可以用它作为参考来迁移。
1.局部变量类型推断
这是自 Java 8 以来添加到 Java 中的最受欢迎的功能之一。它允许你在不指定类型的情况下声明局部变量。类型是从表达式的右侧推断出来的。此功能也称为var
类型。
在上面的示例中,两个程序将生成相同的输出,但在 Java 10 的情况下,我们使用而var
不是指定类型。
基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
- 项目地址:https://github.com/YunaiV/ruoyi-vue-pro
- 视频教程:https://doc.iocoder.cn/video/
2.switch表达式
在 Java 14 中使用 switch 表达式时,你不必使用关键字break
来跳出 switch 语句或return
在每个 switch case 上使用关键字来返回值;相反,你可以返回整个 switch 表达式。这种增强的 switch 表达式使整体代码看起来更清晰,更易于阅读。
基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
- 项目地址:https://github.com/YunaiV/yudao-cloud
- 视频教程:https://doc.iocoder.cn/video/
3.文本块
文本块是 Java 15 中添加的一项新功能。它允许你在不使用转义序列的情况下创建多行字符串。这在你创建 SQL 查询或 JSON 字符串时非常有用。在下面的示例中,你可以看到使用文本块时代码看起来更加简洁。
4.Records
记录Records是添加到 Java 14 的一项新功能。它允许你创建用于存储数据的类。它类似于 POJO 类,但代码少得多;大多数开发人员使用 Lombok 生成 POJO 类,但是有了记录,你就不需要使用任何第三方库。在下面的示例中,你可以看到创建记录类所需的代码非常少。
5.模式匹配instanceof
模式匹配instanceof
是 Java 16 中添加的一项新功能。它允许你将instanceof
运算符用作返回已转换对象的表达式。当你使用嵌套的 if-else 语句时,这非常有用。在下面的示例中,你可以看到我们如何使用instanceof
运算符来捕获Employee
对象,而不是进行显式转换。
6.密封类
密封类是添加到 Java 17 中的一项新功能。它允许你将类或接口的继承限制为一组有限的子类。当你想将类或接口的继承限制为一组有限的子类时,这非常有用。在下面的示例中,你可以看到我们如何使用sealed
关键字将类的继承限制为一组有限的子类。
密封类的子类可以声明为final
或non-sealed
。final 子类不能进一步扩展,而非密封子类可以进一步扩展。
7.有用的 NullPointerException
NullPointerExceptions 是 Java 14 中添加的一项新功能。它允许你获取有关NullPointerExceptions
. 这在调试时非常有用NullPointerExceptions
。在下面的示例中,你可以看到相同的代码如何NullPointerExceptions
在 Java 8 和 Java 14 中生成不同的结果,但在 Java 14 中,你可以获得有关异常的更多信息
我没有介绍自 Java 17 以来添加到 Java 的所有功能,但介绍了最流行的功能。如果你想了解更多关于 Java 的新特性,可以查看下面提供的链接。
参考
- JDK 10 功能 — https://openjdk.org/projects/jdk/10/
- JDK 11 功能 — https://openjdk.org/projects/jdk/11
- JDK 12 功能 — https://openjdk.org/projects/jdk/12
- JDK 13 功能 — https://openjdk.org/projects/jdk/13
- JDK 14 功能 — https://openjdk.org/projects/jdk/14
- JDK 15 功能 — https://openjdk.org/projects/jdk/15
- JDK 16 功能 — https://openjdk.org/projects/jdk/16
- JDK 17 功能 — https://openjdk.org/projects/jdk/17
欢迎加我的微信,全面提升技术能力。
👉 加入方式,“*长按*”或“*扫描*”下方二维码噢:
星球的内容包括:项目实战、面试招聘、源码解析、学习路线。
Oa2OI-1745753833483)]
星球的内容包括:项目实战、面试招聘、源码解析、学习路线。
[外链图片转存中…(img-4W9gvcKh-1745753833483)]
前言
在人工智能(AI)迅速发展的背景下,从传统的编程领域如Java程序员转向大模型开发是一个既充满挑战也充满机遇的过程。对于 Java 程序员来说,这也是一个实现职业转型、提升薪资待遇的绝佳机遇。
为大家整理了一份大模型AGI-CSDN独家资料包,微信扫码即可获取!
一、明确大模型概念
简单来说,大模型就是具有大量参数和强大计算能力的人工智能模型,可以处理各种复杂的任务,如自然语言处理、图像识别等。想象一下,大模型就像是一个超级聪明的大脑,能够理解和处理各种信息。
二、转行步骤
第一步:学习基础知识。了解机器学习、深度学习的基本概念和原理,掌握常见的算法和模型架构。可以通过在线课程、书籍等资源进行系统学习。
第二步:掌握相关工具和框架。大模型的开发通常需要使用一些特定的工具和框架,如 TensorFlow、PyTorch 等。虽然 Java 程序员可能对这些工具不太熟悉,但可以通过学习和实践逐渐掌握。
第三步:提升编程能力。大模型的开发需要高效的编程能力,尤其是在处理大规模数据和复杂计算时。Java 程序员可以进一步提升自己的编程技巧,学习优化算法和代码结构的方法。
第四步:数学知识储备。高数、概率论和线性代数等数学知识对于理解和开发大模型至关重要。Java 程序员可以通过复习和学习相关数学课程,提升自己的数学水平。(
第五步:项目实践。参与开源项目、参加数据竞赛或者通过企业实习获取实际项目经验。在实践中,不仅可以巩固所学知识,还能了解大模型在实际应用中的需求和挑战。
三、Java 程序员的优势
对于 Java 程序员来说,转行做大模型具备一定的优势。Java 语言在企业级应用开发中广泛使用,程序员们对软件架构和开发流程有较为深入的理解,这对于大模型的工程化实施非常有帮助。
总之,Java 程序员要成功转行做大模型,需要不断学习、实践和积累经验。在 AI 时代的浪潮中,抓住机遇,勇敢迈出转型的步伐,迎接新的职业挑战和发展机遇。
四、AI大模型时代的价值技术岗位
随着AI大模型
时代的到来,开发工程师出现了许多新的工种。这些工种的核心不再是关注语言本身,而是模型本身带来的巨大潜力,因为当一个旧维度的东西被一个全新维度的东西代替的时候,人们处理问题的效率回得到十倍甚至是百倍的增长。而这种被行业聚焦的岗位自然变得炽手可热,下面列举一些我认为比较有竞争力的岗位。这些新的工种反映了AI技术
的不断进步和应用范围的拓展,为开发工程师提供了更多选择和机会。
4.1 AI工程师
专门负责设计、开发和实施人工智能系统和算法的工程师。他们需要有扎实的机器学习和深度学习知识,能够构建和训练复杂的神经网络模型。
4.2 数据工程师
负责处理和管理大规模数据的工程师。他们需要设计和实施数据采集、存储、处理和分析的系统,并确保数据的质量和可靠性。
4.3 模型架构师
负责设计和构建大规模AI模型的架构的工程师。他们需要了解不同类型的模型架构,并在实际应用中选择合适的架构来解决问题。
4.4 算法工程师
专门研究和开发新的算法和技术来提升AI模型的性能和效果的工程师。他们需要深入理解机器学习和统计学原理,并具备独立开发新算法的能力。
4.5 质量测试工程师
负责测试和验证AI模型的质量和性能的工程师。他们需要设计和执行各种测试用例,确保模型在各种情况下都能正常运行。
4.5 部署工程师
负责将AI模型部署到生产环境中并确保其高效运行的工程师。他们需要优化模型的性能和资源利用,处理模型的扩展性和容错性等方面的问题。
4.6 训练数据工程师
负责准备和标注训练数据集的工程师。他们需要清洗、标注和整理大规模的数据集,并确保数据的准确性和完整性。
2.7 解释性AI工程师
专门研究如何解释和理解AI模型决策过程的工程师。他们需要开发和应用解释性AI技术,以提高模型的可解释性和可信度。
五、AI工程师需要学习哪些知识
成为一个AI工程师难度实际上是非常高的,很多岗位都起码是要硕士起步,因为需要学习的东西非常多,也需要不断积淀,具体而言,深入学习这些领域的原理、算法和实践经验将有助于成为一名优秀的AI工程师。下面列表一些相关知识:
领域 | 知识点 |
---|---|
数学 | 线性代数、概率与统计、微积分、优化理论等 |
编程 | Python、C++、Java等编程语言,算法和数据结构的基础知识 |
机器学习 | 监督学习、无监督学习、强化学习、深度学习等方法和算法 |
神经网络 | 前馈神经网络、递归神经网络、卷积神经网络等深度学习模型 |
自然语言处理 | 文本分析、语言生成、语义理解、信息检索等技术 |
计算机视觉 | 图像处理、目标检测、图像分类和分割等相关技术 |
数据科学 | 数据清洗和预处理、特征工程、数据可视化等方法 |
软件工程 | 软件开发过程、版本控制、软件测试和调试等技巧 |
深度学习框架 | TensorFlow、PyTorch、Keras等常用深度学习框架 |
人工智能伦理学 | 研究人工智能对社会、经济和伦理方面的影响和应用 |
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
相信大家在刚刚开始学习的过程中总会有写摸不着方向,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程等免费分享出来。
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以微信扫码领取!
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先有一个明确的学习路线,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(完整路线在公众号内领取)
大模型学习路线
👉2.大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)
大模型教程
👉3.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)
电子书
👉4.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)
大模型面试
**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **