10 个 Java Stream 顶级技巧,大量简化代码!

Java Stream API对于 Java 开发人员来说就像一把瑞士军刀 — 它用途广泛、结构紧凑,并且可以轻松处理各种任务。

它为开发人员提供了一种函数式和声明式的方式来表达复杂的数据转换和操作,使代码更加简洁和富有表现力。

但能力越大,责任越大,有效地使用Stream API需要对最佳实践和常见陷阱有深入的了解。

今天,我们将探讨使用Java Stream API的一些最佳实践,并展示如何释放这个神奇工具的全部潜力。>>点击加我微信交流

1. 使用原始流以获得更好的性能

使用 int、long 和 double 等基本类型时,请使用IntStream、LongStream 和 DoubleStream 等基本流,而不是 Integer、Long 和 Double 等装箱类型流。原始流可以通过避免装箱和拆箱的成本来提供更好的性能。

var array = new int[]{1, 2, 3, 4, 5};
var sum = Arrays.stream(array)
               .sum();

2. 避免嵌套流

最佳实践是避免嵌套流,因为它可能导致代码难以阅读和理解。相反,尝试将问题分解为更小的部分,并使用中间集合或局部变量来存储中间结果。

var list1 = Arrays.asList("apple", "banana", "cherry");
var list2 = Arrays.asList("orange", "pineapple", "mango");
var result = Stream.concat(list1.stream(), list2.stream())
                  .filter(s -> s.length() > 5)
                  .collect(Collectors.toList());

3. 谨慎使用并行流

并行流可以在处理大量数据时提供更好的性能,但它们也会引入开销和竞争条件。谨慎使用并行流,并考虑数据大小、操作复杂性和可用处理器数量等因素。

var list = Arrays.asList(1, 2, 3, 4, 5);
var sum = list.parallelStream().reduce(0, Integer::sum);

4. 使用惰性求值以获得更好的性能

Stream API 支持延迟计算,这意味着在调用终端操作之前不会执行中间操作。作为最佳实践,尝试使用惰性计算来通过减少不必要的计算来提高性能。

var list = Arrays.asList(1, 2, 3, 4, 5);
var result = list.stream()
                 .filter(n -> n > 3)
                 .findFirst();

5.避免副作用

Stream API 旨在对数据执行功能操作。避免引入副作用,例如修改流外部的变量或执行 I/O 操作,因为这可能会导致不可预测的行为并降低代码可读性。

var list = Arrays.asList("apple", "banana", "cherry");
var count = 0;
list.stream()
    .filter(s -> s.startsWith("a"))
    .forEach(s -> count++);

6. 将流与不可变对象一起使用

Stream API 最适合不可变对象。使用不可变对象可确保流的状态在处理过程中不会被修改,这可以带来更可预测的行为和更好的代码可读性

var list = Arrays.asList("apple", "banana", "cherry");
var result = list.stream()
                 .map(String::toUpperCase)
                 .collect(Collectors.toList());

7. 在map()之前使用filter()以避免不必要的处理

如果你的流可能包含大量不符合你的条件的元素,请在 map() 之前使用 filter() 以避免不必要的处理。这可以提高代码的性能。

var list = Arrays.asList(1, 2, 3, 4, 5);
var filteredList = list.stream()
                       .filter(i -> i % 2 == 0)
                       .map(i -> i * 2)
                       .collect(Collectors.toList());

8. 优先选择方法引用而不是 lambda 表达式

与使用 lambda 表达式相比,方法引用可以使我们的代码更加简洁和可读。在合适的情况下,优先使用方法引用代替 lambda 表达式。

var list = Arrays.asList(1, 2, 3, 4, 5);
var sum = list.stream()
              .reduce(0, Integer::sum);

9. 使用distinct()删除重复项

如果你的流可能包含重复元素,请使用distinct() 操作来删除它们

var list = Arrays.asList(1, 2, 3, 3, 4, 5, 5);
var distinctList = list.stream()
                       .distinct()
                       .collect(Collectors.toList());

10. 谨慎使用sorted()

Sorted() 操作可能会很昂贵,尤其是对于大型流。仅在必要时谨慎使用。如果你确定输入的数据已经排序,则可以跳过此操作。

var  list  = Arrays.asList( 3 , 2 , 1 ); 
var  SortedList  = list.stream() 
                     .sorted() 
                     .collect(Collectors.toList());

总之,Java Stream API 是一个强大而灵活的工具,可以显著简化数据处理任务的代码。

通过遵循本文中讨论的提示,可以确保代码既高效又有效。但是,请务必记住,有效使用 Java Stream API 需要充分了解其功能和限制。

不断学习和探索 Java Stream API 的世界,释放其全部潜力。

前言

在人工智能(AI)迅速发展的背景下,从传统的编程领域如Java程序员转向大模型开发是一个既充满挑战也充满机遇的过程。对于 Java 程序员来说,这也是一个实现职业转型、提升薪资待遇的绝佳机遇。

为大家整理了一份大模型AGI-CSDN独家资料包,微信扫码即可获取!

在这里插入图片描述

一、明确大模型概念

简单来说,大模型就是具有大量参数和强大计算能力的人工智能模型,可以处理各种复杂的任务,如自然语言处理、图像识别等。想象一下,大模型就像是一个超级聪明的大脑,能够理解和处理各种信息。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

二、转行步骤

第一步:学习基础知识。了解机器学习、深度学习的基本概念和原理,掌握常见的算法和模型架构。可以通过在线课程、书籍等资源进行系统学习。

第二步:掌握相关工具和框架。大模型的开发通常需要使用一些特定的工具和框架,如 TensorFlow、PyTorch 等。虽然 Java 程序员可能对这些工具不太熟悉,但可以通过学习和实践逐渐掌握。

第三步:提升编程能力。大模型的开发需要高效的编程能力,尤其是在处理大规模数据和复杂计算时。Java 程序员可以进一步提升自己的编程技巧,学习优化算法和代码结构的方法。

第四步:数学知识储备。高数、概率论和线性代数等数学知识对于理解和开发大模型至关重要。Java 程序员可以通过复习和学习相关数学课程,提升自己的数学水平。(

第五步:项目实践。参与开源项目、参加数据竞赛或者通过企业实习获取实际项目经验。在实践中,不仅可以巩固所学知识,还能了解大模型在实际应用中的需求和挑战。

三、Java 程序员的优势

对于 Java 程序员来说,转行做大模型具备一定的优势。Java 语言在企业级应用开发中广泛使用,程序员们对软件架构和开发流程有较为深入的理解,这对于大模型的工程化实施非常有帮助。

总之,Java 程序员要成功转行做大模型,需要不断学习、实践和积累经验。在 AI 时代的浪潮中,抓住机遇,勇敢迈出转型的步伐,迎接新的职业挑战和发展机遇。

四、AI大模型时代的价值技术岗位

随着AI大模型时代的到来,开发工程师出现了许多新的工种。这些工种的核心不再是关注语言本身,而是模型本身带来的巨大潜力,因为当一个旧维度的东西被一个全新维度的东西代替的时候,人们处理问题的效率回得到十倍甚至是百倍的增长。而这种被行业聚焦的岗位自然变得炽手可热,下面列举一些我认为比较有竞争力的岗位。这些新的工种反映了AI技术的不断进步和应用范围的拓展,为开发工程师提供了更多选择和机会。

在这里插入图片描述

4.1 AI工程师

专门负责设计、开发和实施人工智能系统和算法的工程师。他们需要有扎实的机器学习和深度学习知识,能够构建和训练复杂的神经网络模型。

4.2 数据工程师

负责处理和管理大规模数据的工程师。他们需要设计和实施数据采集、存储、处理和分析的系统,并确保数据的质量和可靠性。

在这里插入图片描述

4.3 模型架构师

负责设计和构建大规模AI模型的架构的工程师。他们需要了解不同类型的模型架构,并在实际应用中选择合适的架构来解决问题。

4.4 算法工程师

专门研究和开发新的算法和技术来提升AI模型的性能和效果的工程师。他们需要深入理解机器学习和统计学原理,并具备独立开发新算法的能力。

在这里插入图片描述

4.5 质量测试工程师

负责测试和验证AI模型的质量和性能的工程师。他们需要设计和执行各种测试用例,确保模型在各种情况下都能正常运行。

4.5 部署工程师

负责将AI模型部署到生产环境中并确保其高效运行的工程师。他们需要优化模型的性能和资源利用,处理模型的扩展性和容错性等方面的问题。
在这里插入图片描述

4.6 训练数据工程师

负责准备和标注训练数据集的工程师。他们需要清洗、标注和整理大规模的数据集,并确保数据的准确性和完整性。

2.7 解释性AI工程师

专门研究如何解释和理解AI模型决策过程的工程师。他们需要开发和应用解释性AI技术,以提高模型的可解释性和可信度。

在这里插入图片描述

五、AI工程师需要学习哪些知识

成为一个AI工程师难度实际上是非常高的,很多岗位都起码是要硕士起步,因为需要学习的东西非常多,也需要不断积淀,具体而言,深入学习这些领域的原理、算法和实践经验将有助于成为一名优秀的AI工程师。下面列表一些相关知识:

领域知识点
数学线性代数、概率与统计、微积分、优化理论等
编程Python、C++、Java等编程语言,算法和数据结构的基础知识
机器学习监督学习、无监督学习、强化学习、深度学习等方法和算法
神经网络前馈神经网络、递归神经网络、卷积神经网络等深度学习模型
自然语言处理文本分析、语言生成、语义理解、信息检索等技术
计算机视觉图像处理、目标检测、图像分类和分割等相关技术
数据科学数据清洗和预处理、特征工程、数据可视化等方法
软件工程软件开发过程、版本控制、软件测试和调试等技巧
深度学习框架TensorFlow、PyTorch、Keras等常用深度学习框架
人工智能伦理学研究人工智能对社会、经济和伦理方面的影响和应用

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

相信大家在刚刚开始学习的过程中总会有写摸不着方向,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程等免费分享出来。

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。

二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以微信扫码领取!

在这里插入图片描述

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先有一个明确的学习路线方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(完整路线在公众号内领取)

在这里插入图片描述

大模型学习路线

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值