从2月中旬开始,MCP协议火了。
Github上的Star指数,开始加速增长。
上周,OpenAI创始人山姆·奥特曼也在X上公布,对其Agents SDK进行了重大更新,并支持了对手Anthropic推出的MCP服务协议。
那么,MCP协议到底是什么?为什么要用它?
银海老师整理出来了一份MCP的入门指南,涵盖了4个案例、2个实践。
接下来也会在「通往AGI之路」的视频号直播间,开启一系列的共学课程。
第一节课**「初识及入门」**直播已经结束,想要回顾的小伙伴,可以前往视频号已观看回放哦。
先来快速回顾下直播重点:
- 搜索最新的新闻(serper search) + figma mcp,生成最新新闻数据渲染的界面。figma mcp npx版本目前好像因为简化了不需要启动本地服务,于是图片就没办法下载到本地了,这个估计近期作者会去修复。
- Cline + figma + 高德地图生成的多个页面。
高德的MCP已经支持SSE,把多个Figma的链接放到一个需求文档里面可以直接直接生成:
Master go的mcp服务也可以支持生成界面。
以下是银海老师整理出的文字版本:《MCP是大模型的 USB x.0 接口》
MCP是什么?
MCP全称模型上下文协议(Model Context Protocol),是由 Anthropic (Claude 模型的主体公司)在 2024 年 11 月 推出并开源的一项创新标准,旨在让大语言模型能够无缝连接至第三方的数据源。
该协议支持对接 内容存储库、业务工具、开发环境 等多种外部服务,从而赋能 AI 大模型获取更丰富的上下文信息,生成更加精准、相关且智能的回答。
MCP 就像转接头,统一不同服务供所有人使用
MCP 就像一个“转接头”或“通用插座”,它的核心作用是统一不同外部服务(如 Google Drive、GitHub、Slack、本地文件系统等),通过标准化接口与 AI 模型对接。
这样,开发者只需基于 MCP 规范开发一次“接口适配器”(MCP 服务器),就能让所有兼容 MCP 的模型(MCP 客户端)无缝接入,无需针对每个模型单独适配,大幅提升兼容性与开发效率。
MCP 里面还包含 SSE(Server-Sent Events),是一种允许服务器向浏览器推送实时更新的技术。
为AI模型量身定制的“USB-C接口”
可以标准化地连接AI系统与各类外部工具和数据源
传统的 API 就像不同的门和钥匙
每扇门都需要自己的钥匙和特定的规则
MCP与传统API关键区别:
- 单一协议: MCP像一个统一接口,只要一次整合,就能连接多个服务。
- 动态发现: AI模型能自动识别并使用可用的工具,不用提前写死每个接口。
- 双向通信: MCP支持类似WebSockets的实时双向通信,模型不仅能查询数据,还能主动触发操作。
LLM 也不是万能的,它缺失了很多能力,LLM 可以作为智能体的大脑,外部工具就是智能体的手和脚,协助智能体执行决策。一个典型的 Agent 的设计,LLM 充当大脑模块,通过多模态输入,处理信息,然后做出决策和规划行动。
MCP 就是想要通过一个开放的协议,为外部工具(或数据源)提供统一和 LLM 交互的统一集成,MCP 就是手脚连接身体的“关节”。
MCP能做什么?
1、API集成
- 通过联网搜索向 AI 提供最新信息
常见的 AI 助手采用通过联网搜索获取实时信息。当用户开启联网搜索时,助手先将用户的请求发送至搜索引擎,再将返回内容与用户输入一起提供给大模型,最终生成回答。搜索引擎在此作为实时信息源,为大语言模型提供额外的上下文。
- 通过 API 向 AI 提供自有系统数据
如果希望 AI 能提供行业内部信息、**或者研发的自有系统内的信息,**AI 联网搜索的效果就很不好,甚至无法实现。用户可以自行搭建 AI 代理,**将自有系统的数据通过 API 的形式接入 AI 助手,**为大语言模型补充提供丰富的上下文信息。
- 通过 MCP 服务器向 AI 提供上下文信息
MCP 协议解决了 AI 大模型与数据源集成碎片化的问题,提供统一标准,**让开发者无需为每个数据源和 AI 助手单独开发连接器。**通过 MCP,**数据源和 AI 工具可建立安全双向连接,**使 AI 在不同工具和数据集间流畅协作,实现更可持续的架构。
2、Blender MCP
一句话提示,Claude自动化打开Blender将2D图片转为3D建模。而且还能只用一次提示词,再基于这个场景搭建可以互动的网页。
还有直接通过口喷需求对话的方式快速去构建一个用 blender 渲染好的飞机…
已关注
关注
重播 分享 赞
关闭
观看更多
更多
退出全屏
切换到竖屏全屏**退出全屏
WayToAGI Agent探索已关注
分享视频
,时长00:58
0/0
00:00/00:58
切换到横屏模式
继续播放
进度条,百分之0
[播放](javascript:😉
00:00
/
00:58
00:58
全屏
倍速播放中
[ 0.5倍 ](javascript:😉[ 0.75倍 ](javascript:😉[ 1.0倍 ](javascript:😉[ 1.5倍 ](javascript:😉[ 2.0倍 ](javascript:😉
[ 超清 ](javascript:😉[ 流畅 ](javascript:😉
您的浏览器不支持 video 标签
继续观看
智能体MCP协议入门指南,4个案例+2个实践全解析!
观看更多
转载
,
智能体MCP协议入门指南,4个案例+2个实践全解析!
WayToAGI Agent探索已关注
分享点赞在看
已同步到看一看[写下你的评论](javascript:😉
[ 视频详情 ](javascript:😉
3、Manus
Manus 的底层其实也是用了类似 MCP 的方式进行了一系列的工具能力调用(但是求证后实际上是没有使用 MCP,但是思维模式相似),包括了类似“Browser Use”这种可以直接在终端中操控电脑浏览器的工具,能够跨越纯 API 数据获取的方式,进行指令的下发。
- **分析亚马逊在线商店(全程录屏效果参考)
**
https://manus.im/share/c3onakN6Iajcm1Vt1xAVG7?replay=1
已关注
关注
重播 分享 赞
关闭
观看更多
更多
退出全屏
切换到竖屏全屏**退出全屏
WayToAGI Agent探索已关注
分享视频
,时长00:48
0/0
00:00/00:48
切换到横屏模式
继续播放
进度条,百分之0
[播放](javascript:😉
00:00
/
00:48
00:48
全屏
倍速播放中
[ 0.5倍 ](javascript:😉[ 0.75倍 ](javascript:😉[ 1.0倍 ](javascript:😉[ 1.5倍 ](javascript:😉[ 2.0倍 ](javascript:😉
[ 超清 ](javascript:😉[ 流畅 ](javascript:😉
您的浏览器不支持 video 标签
继续观看
智能体MCP协议入门指南,4个案例+2个实践全解析!
观看更多
转载
,
智能体MCP协议入门指南,4个案例+2个实践全解析!
WayToAGI Agent探索已关注
分享点赞在看
已同步到看一看[写下你的评论](javascript:😉
[ 视频详情 ](javascript:😉
- Read my CV & find ML jobs, save them to a file
观看更多
更多
退出全屏
切换到竖屏全屏**退出全屏
WayToAGI Agent探索已关注
分享视频
,时长00:26
0/0
00:00/00:26
切换到横屏模式
继续播放
进度条,百分之0
[播放](javascript:😉
00:00
/
00:26
00:26
全屏
倍速播放中
[ 0.5倍 ](javascript:😉[ 0.75倍 ](javascript:😉[ 1.0倍 ](javascript:😉[ 1.5倍 ](javascript:😉[ 2.0倍 ](javascript:😉
[ 超清 ](javascript:😉[ 流畅 ](javascript:😉
您的浏览器不支持 video 标签
继续观看
智能体MCP协议入门指南,4个案例+2个实践全解析!
观看更多
转载
,
智能体MCP协议入门指南,4个案例+2个实践全解析!
WayToAGI Agent探索已关注
分享点赞在看
已同步到看一看[写下你的评论](javascript:😉
[ 视频详情 ](javascript:😉
4、MCP 服务市场
市面上目前也有越来越多的能力被挖掘出来,并被统一、分类,由不同的数据源和工具控制和供给,以便于用户快速的安装调用。
https://github.com/modelcontextprotocol/servers
飞书文档中还有非常多比较不错的集成综合工具站可以去看看
一起来动手实践!
vscode下载地址:https://code.visualstudio.com/
扩展里面搜索:cline
1、将设计稿转成前端代码
Figma to html MCP 实战,仅需贴入一个链接给大模型,就可以将 figma 中的设计稿界面快速的变成在线可以预览的网页。
- 安装 MCP
使用的是 Figma-Context-MCP 框架,在本地启动服务后再进行信息注册。
https://github.com/GLips/Figma-Context-MCP#configuration
使用 JSON 结构进行注册,同时获取 Figma 的 API Key
- 复制 Figma 稿件地址
(原稿件样例↑)
贴入 figma 稿件地址后,等待效果生成
- 生成预览前端代码
当然,MCP 服务也没有那么“神”,其实是做了一个编辑器的中间转换器,能够支持编辑和读取 figma 内的相关数据。
在这个场景中的 MCP 相当于是对 Figma 的数据上下文结构信息进行读取,结构化设计能力还是依赖于底层模型 Claude,还是会出现布局混乱的现象,*在实际用途上是更方便的取数了。*
Figma 的 MCP 文件读取,可以看到实际上是读取了 Figma 的文件 Dom 结构信息。
使用图片下载的 MCP 能力,对页面结构中的图片进行填充。
2、生成 AI 新闻资讯卡片
主要是实现一句话联网搜索相关信息后,参考相关的样式图进行页面填充,但是看起来也并不稳定,底层还是依赖于 Claude 的能力。
- *获取最**新的新闻数据*
- *参考 Figma 样式*
- *给予对应的 Figma 样式参考链接*
- *生成最后的效果*
MCP客户端工具
注意,很多模型是不能直接支持MCP服务的,因为模型本身没有办法去识别插件的能力(类似之前的function calling)也需要去对不同的工具去识别,在这里推荐开源的模型就是Qwen-max。
Cherry Studio,支持了SSE(类似https接口形式)和npx的安装方式。
当然必须给他点个赞,还是个开源项目:
https://github.com/CherryHQ/cherry-studio
安装完cherry studio后,除了配置基础的模型服务,我们主要在设置中去配置MCP服务器,同时我们应该先把UV/Bun进行一键安装依赖,然后点击添加服务器。
以idoubi大佬的mcp服务市场对接为例:https://mcp.so/
- SSE注册方法:
直接拿到SSE的URL即可,就可以在cherry stuido中选择以“SSE”的结构导入。
- npx注册方法:
点击“编辑JSON”按钮,选择“STDIO”选项的结构,将下面的json结构文件中的正文部分内容进行贴入。
{ "mcpServers": { "sequential-thinking": { "command": "npx", "args": [ "-y", "@modelcontextprotocol/server-sequential-thinking" ] } }}
配置好后点击“启用”按钮。
需要选择能够支持MCP的模型后,启用MCP服务。
可以看到MCP服务已经调用成功了。
OK,以上就是这次银海老师总结的教程了。
MCP的出现,可以说是人工智能发展路上的一个重要标志。
它不再是被动的“回答者”,而是主动的“协作者”。不仅改变了技术的边界,也悄然重塑了我们与世界的互动方式。
虽然 MCP 技术本身可能看起来复杂,但它的核心思想——“连接和整合”——是非常直观且实用的。
…(img-3NPzRytC-1746067830306)]
{ "mcpServers": { "sequential-thinking": { "command": "npx", "args": [ "-y", "@modelcontextprotocol/server-sequential-thinking" ] } }}
配置好后点击“启用”按钮。
[外链图片转存中…(img-8PV7uTqz-1746067830306)]
需要选择能够支持MCP的模型后,启用MCP服务。
[外链图片转存中…(img-soOfxsna-1746067830306)]
可以看到MCP服务已经调用成功了。
[外链图片转存中…(img-5WDeyXy8-1746067830306)]
OK,以上就是这次银海老师总结的教程了。
MCP的出现,可以说是人工智能发展路上的一个重要标志。
它不再是被动的“回答者”,而是主动的“协作者”。不仅改变了技术的边界,也悄然重塑了我们与世界的互动方式。
虽然 MCP 技术本身可能看起来复杂,但它的核心思想——“连接和整合”——是非常直观且实用的。
通过了解 MCP 的基本原理,普通人也能更好地利用基于 MCP 的工具和服务来提升自己的工作效率。
如何学习AI大模型?
大模型的发展是当前人工智能时代科技进步的必然趋势,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。
那么,我们应该如何学习AI大模型?
对于零基础或者是自学者来说,学习AI大模型确实可能会感到无从下手,这时候一份完整的、系统的大模型学习路线图显得尤为重要。
它可以极大地帮助你规划学习过程、明确学习目标和步骤,从而更高效地掌握所需的知识和技能。
这里就给大家免费分享一份 2025最新版全套大模型学习路线图,路线图包括了四个等级,带大家快速高效的从基础到高级!
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
👉2.大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)
大模型教程
👉3.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)
电子书
👉4.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)
大模型面试
**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **