从事实标准走向真正标准
MCP(Model Context Protocol)协议的生态发展正以前所未有的速度推进。近期,两大关键事件标志着MCP已从事实标准迈向行业标准:一方面,OpenAI正式宣布跟进Anthropic的MCP协议,另一方面,Anthropic发布了新版本MCP协议,在Remote MCP Server场景下实现了显著改进。
OpenAI CEO Sam Altman在社交媒体上确认,OpenAI将在旗下产品(包括ChatGPT桌面应用)中集成Anthropic的MCP协议。Altman表示:"MCP的市场反响很好,我们也很高兴能在自家产品中支持这项协议。目前此协议已经在Agents SDK中开放,对于ChatGPT桌面版应用以及Responses API的支持也即将推出!"这一举措意味着开发者可以更轻松地构建能调用实时数据的智能助手,如企业级聊天机器人或自动化工作流。
与此同时,Anthropic于2025年3月26日发布了MCP协议的全新修订版本。此次更新的核心亮点是Streamable HTTP传输机制,它不仅继承了HTTP+SSE的实时消息传输能力,还通过一系列优化使得连接更加稳定、数据传输更具弹性。新版协议采用单一MCP端点同时支持HTTP POST和GET请求,通过强制使用Mcp-Session-Id头实现会话管理,并支持批量请求、响应和通知,以及SSE流的可恢复性。
这两大事件的叠加效应正在加速MCP生态的繁荣发展。据统计,截至2025年2月,已有超过1000个社区构建的MCP Server可用。随着OpenAI的加入,MCP协议有望成为连接AI模型与外部世界的通用标准,就像USB、HTTP或ODBC在各自领域中的地位一样。
MCP Server的应用场景
MCP Server正在改变AI应用的能力边界,让AI从单纯的对话机器变成能够理解用户需求并帮助完成实际任务的智能助手。以下是MCP Server在不同领域的典型应用场景:
智能办公场景
在企业办公环境中,MCP Server可以连接各种内部系统,如邮件服务器、日历、文档管理系统等,使AI助手能够:
-
会议管理
自动记录会议内容,生成会议纪要,并根据讨论创建待办事项
-
邮件处理
分类重要邮件,起草回复,设置提醒
-
文档协作
在团队文档中查找信息,提供编辑建议,跟踪变更
例如,一位经理可以要求AI助手:"整理上周所有销售会议的要点,并创建一个行动项目清单。"AI助手通过MCP Server访问会议记录系统和项目管理工具,自动完成这一任务。
物联网(IoT)集成
在智能家居和工业物联网环境中,MCP Server可以连接各种智能设备和传感器,实现:
-
设备状态监控
实时跟踪设备运行状况,预测维护需求
-
跨设备协同
协调多个设备共同完成复杂任务
-
环境优化
根据用户偏好和使用模式自动调整环境参数
用户可以要求:"当我明天早上7点起床时,提前20分钟开启咖啡机,并将客厅温度调整到22度。"AI助手通过MCP Server与智能家居系统通信,安排这些任务。
开发者工具集成
软件开发团队可以利用MCP Server连接代码仓库、CI/CD管道和项目管理工具,提升开发效率:
-
代码辅助
根据项目上下文生成代码,提供重构建议
-
自动化测试
生成测试用例,执行测试并分析结果
-
项目管理
跟踪任务进度,分配资源,预测交付时间
开发者可以要求:"分析我们的代码库,找出所有未处理的异常情况,并提供修复建议。"AI助手通过MCP Server访问代码仓库,执行静态分析,并生成详细报告。
Local MCP Server与Remote MCP Server
随着MCP生态的发展,从Local MCP Server向Remote MCP Server的演进已成为一种趋势。为了更好地理解这一转变,我们需要先明确这两种MCP Server的概念和区别。
Local MCP Server与Remote MCP Server的概念
Local MCP Server是指在用户本地设备上运行的MCP服务器。在这种模式下,MCP客户端(如Claude Desktop或Cursor)通过本地进程通信(stdin/stdout)与MCP服务器交互,服务器再连接到互联网上的各种API和服务。这种架构简单直接,适合个人开发者使用,但存在一些局限性。
Remote MCP Server则是部署在云端的MCP服务器,用户可以通过互联网访问。在这种模式下,MCP客户端可以是更广泛的网页应用或移动应用,它们通过HTTP协议与远程MCP服务器通信。Remote MCP Server通常集成了认证授权、状态管理、数据库访问等企业级功能,能够为多用户提供服务。
这种转变解决了Local MCP Server在企业环境中的诸多局限性。
Local MCP Server的局限
Local MCP Server虽然简单易用,但在企业级应用中面临诸多挑战:
-
本地环境依赖
对用户本地环境有依赖,比如需要安装 python或docker 等执行环境来运行MCP Server,对非技术用户不友好
-
安全风险
企业不可能将敏感数据库凭证、API密钥或其他关键访问令牌配置给每个员工的本地环境。这不仅违反最小权限原则,还大大增加了凭证泄露的风险。
-
一致性问题
当多个用户需要访问相同的企业资源时,难以保证配置和权限的一致性,容易导致数据不一致或权限混乱。
-
维护成本
为每个用户设备部署和维护MCP Server需要大量IT资源,版本更新、安全补丁和配置变更都需要在每台设备上单独执行。
Remote MCP Server的优势
Remote MCP Server通过集中化部署和管理,解决了上述问题:
-
拓宽使用场景
非技术用户可以通过网页或移动应用等,随时随地通过互联网使用 MCP 能力。
-
集中化安全管控
企业可以在远程服务器上实施严格的访问控制、加密和审计机制,确保敏感凭证的安全。
-
统一权限管理
通过集中化的身份验证和授权系统,企业可以精确控制每个用户对不同资源的访问权限。
-
简化部署与维护
只需维护中央服务器,大大降低了运维成本和复杂性。
Higress开源Remote MCP Server托管方案
虽然远程 MCP Server具有诸多优势,但其实施也带来了新的挑战,特别是在认证授权、服务可靠性和可观测性方面。这正是API网关所擅长的领域,而Higress作为AI原生的API网关,提供了完整的开源MCP Server托管解决方案:
该方案已经更新到 Anthropic 官方的 MCP Server 项目文档中,详情可以点击了解:
https://github.com/modelcontextprotocol/servers?tab=readme-ov-file#for-servers
Higress的MCP Server托管方案采用了分层架构设计,为AI Agent提供了完整的服务访问能力。在最上层,各种AI Agent(如Claude、Cursor、Cline等)通过标准的MCP协议与Higress进行交互。Higress内部实现了完整的安全与管控层,包括MCP会话保持、OAuth2认证、审计日志、速率限制和MCP路由等核心功能。
在服务层面,Higress支持3种MCP Server接入方式:
- 通过Wasm插件在Higress内部实现的内置MCP Server,适用于对接现有SaaS API生态提供MCP能力
- 直接转发给外部已经支持 MCP 协议的服务,适用于对接已有的外部MCP能力
- 通过服务注册中心(如Nacos)动态发现外部MCP Server,并且可以通过Nacos配置中心的能力动态更新MCP Server的工具定义,适用于企业将传统业务API升级为MCP能力
这种灵活的架构设计使得企业可以根据自身需求选择最适合的部署方式,既可以享受Higress提供的一站式托管服务,也可以保持现有MCP Server的独立性。
API网关能力与MCP服务的天然契合
Higress基于Envoy构建,继承了传统API网关在认证、授权、限流和可观测性方面的成熟能力,同时针对AI场景进行了优化。这些能力与MCP服务的需求高度契合:
-
统一认证授权
Higress提供OAuth2插件,可以满足新版MCP协议对认证鉴权的要求。开发者无需编写复杂的认证代码,只需简单配置即可实现安全的用户认证和权限控制。
-
精细化流量控制
通过Higress的限流插件,可以为不同用户、不同工具设置不同的调用配额,防止资源滥用和服务过载。
-
全链路可观测性
Higress集成了Prometheus和OTel等开源观测方案,提供完整的指标监控和分布式追踪能力,使运维团队能够实时监控MCP服务的健康状况和性能表现。
-
审计日志
记录所有工具调用行为,满足合规要求,同时为安全分析提供数据支持。
基于Wasm的MCP Server扩展能力
Higress的一大技术亮点是支持WebAssembly (Wasm) 插件,这为MCP Server提供了强大的扩展能力:
通过Wasm插件机制,开发者可以:
-
快速添加新Server
使用多种语言(当前先提供了Go语言的MCP Server SDK)开发MCP Server,编译为Wasm后动态加载到Higress中,无需重启服务。
-
安全隔离
每个Wasm插件在独立的沙箱中运行,即使插件崩溃也不会影响网关的稳定性。
-
动态更新
得益于Envoy对长连接的友好处理和Wasm插件的动态更新机制,MCP Server逻辑可以在不中断流量的情况下实时更新。
协议卸载的优势
目前MCP一共有两个版本的协议,分别是20241105版本和20250326版本,从协议发展来看,标准的沉淀和优化速度,难以跟上迅猛发展的MCP Server生态。这也为MCP的早期采用者埋下隐患,当构建了大量MCP Server,面对未来协议版本升级,需要进行繁重的升级改造工作。
而在Higress这层网关,刚好可以帮助屏蔽多个版本的协议细节。甚至实现MCP to REST/Dubbo等等协议转换的能力。可以在Higress这层网关完成所有版本的MCP协议卸载。就像我们用Higress作为传统的API网关时一样,统一卸载HTTP1/HTTP2/HTTP3的客户端协议。
目前,Higress可以在一个接入点上同时支持MCP的20241105版本和20250326版本两种协议。在协议的传输层上,支持目前最多AI工具采用的POST+SSE模式,以及最新的Streamable HTTP模式。我们预计未来随着应用生态对实时性的要求,WebSocket这种全双工的双向实时通信协议会更受青睐,而得到广泛采用。Higress原生支持WebSocket,它能够实现全双工的双向实时通信,而且Higress支持WebSocket配置修改后连接保持以及优雅断开,到时,Higress在MCP会话保持上的优势将愈加凸显。
部署与运维优势
Higress的MCP Server Hosting方案在部署和运维方面具有显著优势:
-
弹性伸缩
基于Kubernetes的自动伸缩能力,根据流量自动调整实例数量,确保服务的高可用性和资源利用效率。
-
灰度发布
支持MCP Server的灰度发布和A/B测试,降低更新风险。
-
一键部署
提供Helm Chart,简化部署流程,降低运维门槛。
-
使用Higress托管的MCP Server可以轻松处理每秒数十万次的工具调用请求,同时保持毫秒级的响应时间,满足企业级应用的性能需求。
欢迎参与Higress MCP生态共建
Higress社区正在积极推动MCP生态的发展,计划在2025年4月中旬在higress.ai上提供公开的MCP市场,方便用户体验Remote MCP Server的优势。例如👇这个视频是直接在Cursor上输入一个在Higress部署的MCP Server接入点,实现对接数据库schema编写CRUD代码:
通过开放的MCP市场,我们可以让用户无需自己部署Higress和MCP Server,也体验到这样的能力。
开放的MCP市场
Higress的MCP市场将提供:
-
丰富的MCP Server生态
覆盖常见的应用场景,如文档处理、数据分析、代码辅助等。
-
一键使用
通过Web界面,用户可以一键获取MCP Server接入点,并在自己的AI工具中使用。
-
社区共享机制
开发者可以将自己开发的MCP工具通过开源社区Review后,上架到市场,提供用户使用。
企业级MCP市场
除了开源社区版本,阿里云API网关也将很快上架MCP市场,面向企业用户提供更加完善的服务:
-
企业级SLA保障
提供99.99%的服务可用性承诺,满足企业关键业务的需求。
-
合规认证
通过多项安全合规认证,满足金融、医疗等行业的严格要求。
-
专家支持
提供7x24小时技术支持和咨询服务,帮助企业快速解决问题。
-
这使得企业可以在享受SaaS MCP生态的同时,也构建自己内部的MCP Server生态。
合作共赢
如果你是一家提供SaaS服务的企业,正在希望构建MCP Server从而让用户在AI场景下付费使用自己的API,Higress社区欢迎与你合作:
-
技术支持
提供MCP Server开发的技术指导,或者由我们开源社区帮助你构建。
-
联合推广
在Higress官方渠道宣传合作伙伴的MCP服务。
-
市场入驻
帮助你的MCP Server在Higress官方的MCP市场中上架托管。
通过开源的方式,Higress社区致力于推动MCP生态的繁荣发展,让更多开发者和企业能够轻松构建和部署MCP Server,释放AI助手的全部潜力。
你是一家提供SaaS服务的企业,正在希望构建MCP Server从而让用户在AI场景下付费使用自己的API,Higress社区欢迎与你合作:
-
技术支持
提供MCP Server开发的技术指导,或者由我们开源社区帮助你构建。
-
联合推广
在Higress官方渠道宣传合作伙伴的MCP服务。
-
市场入驻
帮助你的MCP Server在Higress官方的MCP市场中上架托管。
通过开源的方式,Higress社区致力于推动MCP生态的繁荣发展,让更多开发者和企业能够轻松构建和部署MCP Server,释放AI助手的全部潜力。
随着OpenAI和Anthropic等行业巨头的推动,以及Higress等开源项目的支持,MCP协议正在从事实标准走向行业标准。未来,我们有理由相信,MCP将成为连接AI与现实世界的关键桥梁,为各行各业带来前所未有的智能化体验。
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
👉2.大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)
大模型教程
👉3.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)
电子书
👉4.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)
大模型面试
**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
**或扫描下方二维码领取 **