产品经理的模型微调知识

大家好,我是一名摸爬滚打多年的产品经理。最近在参与一个智能客服项目时,被"Pretrain"、“SFT”、"PPO"这些AI黑话劈头盖脸地砸了过来,真有点上战场还不懂枪械的感觉。

为了搞清楚大模型训练到底在做啥,我试着用“做火锅底料”的方式来理解,结果竟然通了!

今天就用这个火锅思维,带你一口一口吃透大模型的训练全过程👇


🍲 第一锅:熬底料(Pretrain)

想象你要在重庆开一家火锅店,第一步当然是熬制出一锅能打的红油锅底

  • 原料:你跑遍市场,搞来了15吨牛油、辣椒、花椒……这就像LLaMA3训练用的15万亿个Token语料。
  • 熬法:教徒弟每天围着锅边看你下料(自回归学习),记住"先牛油,后辣椒,再花椒"的投料顺序(联合概率学习)。
  • 难点:徒弟刚开始连豆瓣酱和番茄酱都分不清(模型随机初始化),你得一次次纠正(损失函数调参)。

这阶段的徒弟已经能做出一锅香辣火锅了,但你要他做鸳鸯锅?还不行。他还不会应对具体任务——这就是预训练阶段的状态。


🐔 第二锅:定制火锅(SFT 指令微调)

某天来了位广东老客户,说:“我要椰子鸡火锅!”

你得开小灶了:

  • 教学方式:拿出80位粤菜大师的手写菜谱(高质量指令数据),手把手教徒弟怎么先放椰青再加鸡肉。

  • 成本惊人:光是买文昌鸡,就烧了5000万(标注数据太贵了!)。

  • 玄学问题:按菜谱做,徒弟有时还会下错料。

    • 学太死 → 一遇到新食材就懵圈(过拟合)
    • 学太浅 → 做出来寡淡无味(欠拟合)

这时候你要做的,是权衡资源:请米其林主厨来写菜谱?还是发动服务员众包标注?选错一个,锅就翻了。


🍜 第三锅:大众点评决定生死(Reward Model)

徒弟现在会做20种火锅底了,但哪种最好吃?

  • 测评方法:请来100位吃货盲测评分(人类偏好排序),比如“这个汤底比另一个更鲜3分”。
  • 潜规则:把高分菜谱偷偷塞给徒弟学习(训练奖励模型)。
  • 雷区:请湖南人给广式粥评分,直接打0分(标注偏差,踩雷现场)。

要命的是:不同人偏好差异巨大,你要不要单独给川渝客户建个评分体系?这一步,已经进入了个性化优化


🔥 第四锅:后厨军备竞赛(PPO / DPO)

终于到了最硬核的阶段!徒弟开始接受客户打分、现场优化!

  • PPO打法(OpenAI流):每炒一锅就请顾客评分,徒弟一边挨骂一边改进,活脱脱一个“卷王”。
  • DPO打法(Meta流):不现场评分了,直接给徒弟看“椰子鸡>猪肚鸡”的对比总结,让他自己悟。

但有风险:

  • 徒弟为拿高分猛加味精,结果顾客投诉味精超标(奖励模型设计翻车)。
  • 老板突然说:“下周上新菌汤锅!”而你的数据团队还在马尔代夫度假(需求变更杀手)。

📒 产品经理的火锅训练手册

作为产品经理,如何不迷失在这锅AI火锅里?你可以记住这几条真理:

  1. 预训练=铺底成本:15吨辣椒的钱虽然贵,但没它,火锅店根本开不起来。
  2. 数据质量>数量:千万别让素食主义者来给肥肠锅打分。
  3. 算法选型要贴场景:不是每家火锅店都请得起米其林评委(PPO?DPO?看你的实际需求)。
  4. 冷启动要聚焦:先把红油火锅做好,再考虑鸳鸯、菌汤,别一开始就想做“万能锅”。

🧠 最后的小彩蛋:客服项目的启发

最近朋友做智能客服系统,被甲方反复强调“要人性化!

他以为是要语气温柔,结果对方意思是:不能说那些“车轱辘话”,别太AI味。

怎么办?

  • 在SFT微调时,加入一些“客户吵架录音”(真实业务数据),模型才能学会说:“亲,这边建议您先别着急~”

这才是真正的拟人化表达


✅ 总结一句话:

“你以为他们在搞AI优化,实际上就是后厨在被大众点评差评逼着改锅底呢!”

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

题图来自 Unsplash ,基于 CC0 协议,如有侵权,请联系删除

<think>好的,我现在要帮用户了解BAT等大厂对AI产品经理的能力要求和模型。首先,我需要回顾用户提供的引用内容,看看里面有哪些相关的信息。 用户给的引用1提到了大厂对AI产品经理的分级,从L1到L4,每个级别有不同的技能要求,尤其是L4级别需要掌握大模型微调和私有化部署,这对能力模型有直接参考。引用2指出AI产品经理需要了解算法和模型的应用场景,这也涉及到技能要求。引用3提到转型AI产品经理需要克服的问题,比如技术沟通、工作流程等,这些都是能力的一部分。引用4虽然主要讲大学生进大厂的条件,但提到了计算机基础素养的重要性,可能相关。 接下来,我需要将这些信息整合起来,构建一个结构化的能力模型。通常大厂的能力模型可能包括技术理解、产品设计、业务落地、项目管理、行业认知等方面。用户提到的L1到L4分级可以作为技术能力的部分,比如对AI大模型的理解深度。同时,引用2中的算法应用场景属于技术理解的一部分。 另外,引用3提到传统产品经理需要掌握AI产品的工作流程和重点,这可能涉及产品设计能力和项目管理的技能。业务负责人需要将AI落地到业务中,这对应业务落地能力。行业认知方面,可能需要了解AI在不同领域的应用趋势,如引用1中的报告合集可能涉及行业知识。 还需要考虑沟通能力和技术话语权,如引用3中提到的和技术团队沟通的问题,这属于软技能范畴。此外,引用4提到的计算机基础可能作为技术素养的一部分,虽然AI产品经理不一定需要深入编程,但基础理解是必要的。 用户的问题可能希望得到详细的分类,比如核心能力、技术能力、业务能力、软技能等。需要将这些点分门别类,并结合引用中的分级(L1-L4)来展示进阶要求。例如,L4级别可能对应更高级的技术能力和业务落地经验。 最后,生成相关问题时要覆盖用户可能进一步关心的方面,比如如何准备面试、职业发展路径、技能提升方法等,参考用户之前的提问模式,确保问题有逻辑性和连贯性。</think>### BAT大厂AI产品经理能力模型与技能要求解析 BAT等大厂对AI产品经理的能力要求呈现**“技术深度+业务广度+行业前瞻性”**的复合型特征,以下是基于行业实践和招聘需求的综合能力模型: --- #### 一、核心能力框架 1. **技术理解能力** - **AI基础理论**:掌握机器学习、深度学习基础概念(如损失函数$L = \frac{1}{n}\sum_{i=1}^n(y_i - \hat{y}_i)^2$)、常见算法(决策树、CNN/RNN)的适用场景[^2] - **大模型技术栈**:熟悉预训练、微调(如LoRA)、模型压缩等关键技术,能参与技术方案评审[^1] - **工程化认知**:理解模型部署(如Docker/K8s)、推理优化(量化/蒸馏)等流程[^1] 2. **产品设计能力** - **场景拆解**:能将业务需求转化为AI技术问题(如推荐系统冷启动问题→对比学习解决方案) - **价值验证**:设计AB测试框架验证模型效果,量化指标如$Recall@K = \frac{TP}{TP+FN}$ - **伦理风险控制**:构建数据偏见检测机制,确保模型公平性$\mathbb{E}[f(x)|s=1] = \mathbb{E}[f(x)|s=0]$ 3. **业务落地能力** - **垂直行业知识**:在医疗/金融/电商等领域,能结合行业特性设计AI产品(如医疗影像产品的DICOM标准适配) - **商业化闭环**:构建数据飞轮(Data Flywheel)实现模型迭代与商业价值正循环[^3] --- #### 二、BAT典型分级要求 | 级别 | 技术要求 | 业务要求 | 薪资范围(月薪) | |------|----------|----------|------------------| | L1 | 大模型API调用、Prompt工程 | 功能模块落地 | 3-5万 | | L2 | 多模态应用开发、RAG架构 | 独立负责垂类产品 | 5-7万 | | L3 | 模型微调(P-tuning v2)、分布式训练 | 跨部门复杂项目推进 | 7-10万 | | L4 | 私有化部署、MoE架构优化 | 战略级产品规划 | 10万+[^1] | --- #### 三、关键差异点 1. **与传统PM的区别** - 需阅读技术论文(如arXiv最新成果)并提出产品化建议 - 主导构建特征工程体系,例如设计用户Embedding生成框架: $$E_u = f(BehaviorSeq) \oplus g(Profile)$$ 2. **大厂特殊要求** - 腾讯:强调C端场景创新(如游戏AI NPC设计) - 阿里:侧重商业生态整合(如达摩院模型与淘宝业务耦合) - 百度:要求全栈AI能力(文心大模型+搜索/自动驾驶多场景)[^4] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值