地球物理反演(二):线性代数review

一、线性独立(linear combination)和线性依赖(linear dependence)

请添加图片描述
请添加图片描述

二、子空间(Subspace of R n R^n Rn

2.1 零空间(Null space)

零空间求解范例

2.2 零空间和线性独立的关系

2.3 列空间(column space)

三、正交和点积

1. 点积(dot product)

hightly comments:

  1. https://zhuanlan.zhihu.com/p/156902939
  2. https://zhuanlan.zhihu.com/p/112216204

请添加图片描述请添加图片描述

2. 用二范数表示点积

单个向量的二范数表示为:
∥ x ∥ 2 = x T x = x 1 2 + x 2 2 + x 3 2 + . . . + x n 2 \parallel x \parallel_2 = \sqrt{x^Tx} = \sqrt{x_1^2+x_2^2+x_3^2+...+x_n^2} x2=xTx =x12+x22+x32+...+xn2

则:两个向量的点积表示
在这里插入图片描述
请添加图片描述

3. 正交(orthogonal)

hightly comments:

  1. 正交向量+正交基:https://zhuanlan.zhihu.com/p/351028051
  2. 正交子空间:https://zhuanlan.zhihu.com/p/351240467
  3. 正交矩阵:https://zhuanlan.zhihu.com/p/353528689

正交向量: 两个向量的点积值为0

正交基:(基是线性独立的向量集合,通过他们的线性组合表示空间中的任意元素(span)),基不能平行,需要相交,不是强制正交的,但是正交的基非常香,单位长度的基最香,所以我们常常使用标准正交基~

正交矩阵:单位向量之间是正交的(全称为:正交标准矩阵)

4. Gram-Schmidt 正交化

hightly comments:

  1. https://zhuanlan.zhihu.com/p/30954790
  2. https://blog.csdn.net/stranger_man/article/details/80874466

从线性无关向量出发,将其标准化为标准正交化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

留小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值