官方网站: sklearn.feature_selection.f_regression
sklearn.feature_selection.f_regression(X,y,center = True )
数学原理
单变量线性回归测试。
用于测试许多回归变量各自的效果的线性模型。这是要在特征选择过程中使用的评分功能,而不是独立式特征选择过程。
分两个步骤完成:
-
计算每个回归变量与目标之间的相关性,即(((X [:, i]-mean(X [:, i]))(y-mean_y))/(std(X [:, i] ) std(y))。
-
将其转换为F分数,然后转换为p值。

本文介绍了在特征选择中使用f_regression方法进行单变量线性回归测试的数学原理和步骤。该方法计算特征与目标变量的关联性,通过相关性转化为F分数并得到p值,用于评估特征的重要性。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



