极大似然估计原理解析

本文转载自《知行流浪》 的CSDN 博文,感谢大牛的付出,特此收纳,以表敬意。
           原文连接:https://blog.csdn.net/zengxiantao1994/article/details/72787849 

  • 贝叶斯决策

首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:

p(w|x)=\frac{p(x|w)p(w)}{p(x)}

        其中:p(w)为先验概率,表示每种类别分布的概率;类p(x|w)为条件概率,表示在某种类别前提下,某事发生的概率;而p(w|x)为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。

        我们来看一个直观的例子,已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?

        从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。

        设:w1=男性,w2=女性,x=穿凉鞋

        由已知可得:

                              先验概率 p( w_{1})=2/3p( w_{2})=1/3

                              类条件概率 p(x\mid w_{1})=1/2p(x\mid w_{2})=2/3
        男性和女性穿凉鞋相互独立,所以:

                             p( x)=p(x\mid w_{1})p( w_{1})+p(x\mid w_{2})p( w_{2})=5/9

        由贝叶斯公式算出:

                 p(w_{1}\mid x)=\frac{p(x\mid w_{1})p(w_{1})}{p(x)}=\frac{1/2*2/3}{5/9}=3/5

                p(w_{2}\mid x)=\frac{p(x\mid w_{2})p(w_{2})}{p(x)}=\frac{2/3*1/3}{5/9}=2/5

  • 问题引出

        但是在实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率p( w_{i})和类条件概率(各类的总体分布)p(x\mid w_{i})都是未知的。根据仅有的样本数据进行分类时,一种可行的办法是我们需要先对先验概率和类条件概率进行估计,然后再套用贝叶斯分类器。

        先验概率的估计较简单,1、每个样本所属的自然状态都是已知的(有监督学习);2、依靠经验;3、用训练样本中各类出现的频率估计。

        类条件概率的估计非常难,原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度p(x\mid w_{i})转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。当然了,概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值,如果模型都错了,那估计半天的参数,肯定也没啥意义了。

  • 重要前提

        上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。

        重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 ,且有充分的训练样本。

  • 极大似然估计(MLE,Maximum Likelihood Estimation)

        极大似然估计的原理,用一张图片来说明,如下图所示:

总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:
                                                                   D=\left \{ x_{1},x_{2},...,x_{n}\right \}

似然函数(linkehood function):联合概率密度函数p(D\mid \theta )称为相对于\left \{ x_{1},x_{2},...,x_{n}\right \}的θ的似然函数。

                                      l(\theta )=p(D\mid \theta )=p(x_{1},x_{2},...,x_{n}\mid \theta )=\prod_{i=1}^{n}p(x_{i}\mid \theta )

如果\hat{\theta }是参数空间中能使似然函数l(\theta )最大的θ值,则\hat{\theta }应该是“最可能”的参数值,那么\hat{\theta }就是θ的极大似然估计量。它是样本集的函数,记作:

                                                                 \hat{\theta }=d(x_{1},x_{2},...,x_{n})=d(D)

                                                                 \hat{\theta }(x_{1},x_{2},...,x_{n})称作极大似然函数的估计值

  • 求解极大似然函数(需要先熟记对数运算法则及求导法则)

ML估计:求使得出现该组样本的概率最大的θ值。

                                                         \hat{\theta }=arg\underset{\theta}{max} l(\theta )=arg\underset{\theta}{max}\prod_{i=1}^{n}p(x_{i}\mid \theta )

实际中为了便于分析,定义了对数似然函数:

                                                                        H(\theta )=lnl(\theta )

 

\tiny \hat{\theta }=arg\underset{\theta}{max} H(\theta )=arg\underset{\theta}{max} lnl(\theta )=arg\underset{\theta}{max}ln\prod_{i=1}^{n}p(x_{i}\mid \theta )=arg\underset{\theta}{max}\sum_{i=1}^{n}lnp(x_{i}\mid \theta )

1. 未知参数只有一个(θ为标量),在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:  

                                                   \frac{dl(\theta )}{d(\theta )}=0\Leftrightarrow \frac{dH(\theta )}{d(\theta )}=\frac{dlnl(\theta )}{d(\theta )}=0

2.未知参数有多个(θ为向量), 则θ可表示为具有S个分量的未知向量:

                                                                   \theta =\left [ \theta_{1},\theta_{2},...,\theta_{s}\right ]^{T}

记梯度算子:

                                                              \triangledown _{\theta} =\left [ \frac{\partial }{\partial \theta_{1}},\frac{\partial }{\partial \theta_{2}},...,\frac{\partial }{\partial \theta_{s}}\right ]^{T}

         若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解:

                                                            \triangledown _{\theta} H(\theta )=\triangledown _{\theta} lnl(\theta )=\sum_{i=1}^{n}\triangledown _{\theta} lnp(x_{i}\mid \theta )=0

         方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

  • 极大似然估计的例子

 例1:设样本服从正态分布N(u,\sigma ^{2}),则似然函数为:

                      L(u,\sigma ^{2})=\prod_{i=1}^{n}\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(x_{i}-u)^{2}}{2\sigma ^{2}}}=(2\pi \sigma ^{2})^{-\frac{n}{2}}e^{-\frac{1}{2\sigma ^{2}}\sum_{i=1}^{n}(x_{i}-u)^{2}}

它的对数:

                                      lnL(u,\sigma ^{2})=-\frac{n}{2}ln(2\pi )-\frac{n}{2}ln(\sigma ^{2})-\frac{1}{2\sigma ^{2}}\sum_{i=1}^{n}(x_{i}-u)^{2}

求导,得方程组:

                                             \frac{\partial lnL(u,\sigma ^{2})}{\partial u} =\frac{1}{\sigma ^{2}}(\sum_{i=1}^{n}x_{i}-nu)=0

                                            \frac{\partial lnL(u,\sigma ^{2})}{\partial \sigma ^{2}} =-\frac{n}{2\sigma ^{2}}+\frac{1}{2\sigma ^{4}}\sum_{i=1}^{n}(x_{i}-u)^{2}=0

联合解得:

                                          u^{*}=\bar{x}=\frac{1}{n}\sum_{i=1}^{n}x_{i}                                                                                                                                                                           \sigma ^{*2}=\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}

似然方程有唯一解(u^{*},\sigma ^{*2}):,而且它一定是最大值点,这是因为当\left | u \right |\rightarrow \infty\sigma ^{2}\rightarrow \infty或0时,非负函数L(u,\sigma ^{2})\rightarrow \infty。于是u\sigma ^{2}的极大似然估计为(u^{*},\sigma ^{*2})

例2:设样本服从均匀分布[a, b]。则X的概率密度函数:

                                                           

        对样本D=\left \{ x_{1},x_{2},...,x_{n}\right \}

                                            

        很显然,L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求L(a,b)的最大值,为使L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于max\left \{ x_{1},x_{2},...,x_{n}\right \},否则,L(a,b)=0。类似地a不能大于min\left \{ x_{1},x_{2},...,x_{n}\right \},因此,a和b的极大似然估计为:

                                                                          a^{*}=min\left \{ x_{1},x_{2},...,x_{n}\right \}

                                                                          b^{*}=max\left \{ x_{1},x_{2},...,x_{n}\right \}

  • 总结

        求最大似然估计量的一般步骤:

        (1)写出似然函数;

        (2)对似然函数取对数,并整理;

        (3)求导数;

        (4)解似然方程。

        最大似然估计的特点:

        1.比其他估计方法更加简单;

        2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;

        3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。

  • 4
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值