傅里叶级数与傅里叶变换

傅里叶级数:任何周期函数,只要满足一定条件都可以表示为不同频率的正弦和/或余弦之和的形式,该和成为傅里叶级数。

傅里叶变换:任何非周期函数(但该曲线下的面积是有限的),也可以用正弦和/或余弦乘以加权函数的积分来表示,在这种情况下的公式就是傅里叶变换。

傅里叶级数与傅里叶变换的关系:周期函数的周期可以趋向无穷大,这样就可以将傅里叶变换看成是傅里叶级数的推广。

  • 一、傅里叶级数

  • 1.1傅里叶级数的三角形式

假设f(x)是周期为T的函数,并且满足傅里叶级数的收敛条件,那么可以写作傅里叶级数:

                               f(x)=\frac{a_{0}}{2}+\sum_{n=1 }^{+\infty}(a_{n}cos(\frac{2\pi nx}{T})+b_{n}sin(\frac{2\pi nx}{T}))                   (1)

其中:

                                                                 a_{0}=\frac{2}{T}\int_{x_{0}}^{x_{0}+T}f(x)d_{x}                                 (2)

                                                        a_{n}=\frac{2}{T}\int_{x_{0}}^{x_{0}+T}f(x)cos(\frac{2\pi nx}{T})d_{x}                      (3)

                                                       b_{n}=\frac{2}{T}\int_{x_{0}}^{x_{0}+T}f(x)sin(\frac{2\pi nx}{T})d_{x}                        (4)

  • 1.2傅里叶级数的复指数形式

借助欧拉公式可以将上述的傅里叶级数的三角形式转换为如下的复指数形式:

                                                               f(x)=\sum_{n=-\infty }^{+\infty}c_{n}e^{i\frac{2\pi nx}{T}}                                         (5)

其中:

                                                               c_{n}=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(x)e^{-i\frac{2\pi nx}{T}}d_{x}                               (6)

也就是说,曲线可以理解为无数旋转的叠加,将f(x)看作是圆周运动的组合,只是x不断增大,不是绕着圆变换。X的不断增大,称为时域。

  • 1.3傅里叶级数的余弦形式(略)

 

  • 二、傅里叶变换

  • 2.1一维连续傅里叶变换

对于定义域为整个时间轴(-∞<t<+∞)的非周期函数f(x),此时已无法通过周期拓延将其扩展为周期函数,这种情况下就要用到傅里叶变换:

                                                              F(u)=\int_{-\infty }^{+\infty }f(x)e^{-i2\pi ux}d_{x}                            (7)

根据傅里叶反变换得出:

                                                             f(x)=\int_{-\infty }^{+\infty }F(u)e^{i2\pi ux}d_{u}                                (8)

其中u=1/T,是函数f(x)的频率。

仔细观察式(7)和式(8),对比复指数形式的傅里叶级数展开式(5),注意到在这里傅里叶变换的结果F(u)实际上相当于傅里叶级数展开中的傅里叶系数,而反变换公式(8)则体现出不同频率复指数函数的加权和的形式,相当于复指数形式的傅里叶级数展开公式,只不过这里的频率u变为了连续的,所以加权和采用了积分的形式。这是因为随着作为式(6)的积分上下限的T向整个实数定义域的扩展,即T趋近于∞,频率u则趋近于du(u=1/T),导致原来离散变化的u连续化。

  • 2.2一维离散傅里叶变换

一维函数f(x)(其中x=0,1,2,...,M-1)的傅里叶变换的离散形式为:

                                             F(u)=\sum_{x=0 }^{M-1}f(x)e^{-i\frac{2\pi ux}{M}},u=0,1,2,...,M-1          (9)

相应的反变换为:

                                           f(x)=\frac{1}{M}\sum_{u=0 }^{M-1}F(u)e^{i\frac{2\pi ux}{M}},x=0,1,2,...,M-1         (10)

仔细观察式(9)和式(10)注意到在频率域下变换F(u)也是离散的,且其定义域仍为0-M-1,这是因为F(u)的周期性,即:

                                                                        F(u+M)=F(u)

式(10)中的系数1/M,在这里被放在了反变换之前,实际上它也可以位于式(9)的正变换中。更一般的情况是只要能保证正变换和反变换之前的系数乘积为1/M即可。例如:两个公式的系数可以均为\frac{1}{\sqrt{M}}

为了求得每一个F(u)(u=0,1,2,...,M-1),需要全部M个点的f(x)都参与加权求和运算。对于M个u,则总共需要大约M2次计算。当图像较大时,计算量较大。在快速傅里叶变换中会研究如何提高速度。

  • 2.3二维连续傅里叶变换

                                                    F(u,v)=\int_{-\infty }^{+\infty }\int_{-\infty }^{+\infty }f(x,y)e^{-j2\pi (ux+vy)}d_{x}d_{y}            (11)

其反变换为:

                                                   f(x,y)=\int_{-\infty }^{+\infty }\int_{-\infty }^{+\infty }F(u,v)e^{j2\pi (ux+vy)}d_{u}d_{v}                (12)

  • 2.4二维离散傅里叶变换

在数字图像处理领域,我们关注的是二维离散函数的傅里叶变换(Discrete Fourier Transform,DFT)公式:

                                               F(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-i2\pi (\frac{ux}{M}+\frac{vy}{N})}                      (13)

其反变换为:

                                                 f(x,y)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{i2\pi (\frac{ux}{M}+\frac{vy}{N})}                (14)

其中M、N分别为图像的宽度、高度。

相对于空间域的变量x,y,这里的u,v是频率域的变量。同上述一维中的情况相同,由于频谱的周期性,式(13)只需对u值(u=0,1,2,...,M-1)及v值(v=0,1,2,...,M-1)进行计算。系数1/MN的位置并不重要。

根据式(13),频域原点位置的傅里叶变换为:

                                                              F(0,0)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)                                 (15)

显然这是f(x,y)各个像素的灰度之和。而如果将系数1/MN放在正变换之前,则F0,0)对应于原图像fxy)的平均灰度。F(0,0)有时被称作频率谱的直流分量。

  • 三、频谱和功率谱

  • 3.1频谱的获得

满足一定条件的信号都可以通过傅立叶变换而分解成一个直流分量(也就是一个常数)和若干个(一般是无穷多个)正弦信号的和。每个正弦分量都有自己的频率和幅值,这样,以频率值作横轴,以幅值作纵轴,把上述若干个正弦信号的幅值画在其所对应的频率上,就做出了信号的幅频分布图,也就是所谓频谱图。本段对频谱图的定义是基于傅里叶级数的三角形式,但是在图像处理中主要用到的是复指数形式,因此本段描述仅仅作为了解。

 图像二维频谱图通过对输入图像进行水平和竖直两个方向的所有扫描线的一维傅立叶变换进行叠加得到,用来表示输入图像的频率分布。频谱图以图像的中心(Halcon中心位置可选)为圆心,圆的相位对应原图中频率分量的相位,半径对应频率高低。低频半径小,高频半径大,中心为直流分量(直流分量决定了图像的平均灰度,将其置0后输出图像的平均灰度为0),某点的灰度值对应该频率的能量高低。

  • 3.2频谱图的特征

(1)在频谱图中,中心部分(u-v坐标系中点(0,0)附近)表示原图像中的低频部分。 

(2)如果原始图像具有十分明显的规律,那么其频谱一般表现为坐标原点周围的一圈亮点。 

(3)如果频谱图中暗的点数更多,那么实际图像是比较柔和的(各点与邻域差异都不大,梯度相对较小);反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的(边界分明且边界两边像素差异较大)。

(4)频谱图中心对称,并且将一张灰度图像反相后,其频谱样式不变。

(5)频谱图上的各点与图像上各点并不存在一一对应的关系,频谱上每一点都与空域所有点有关,反之,空域每一点都与频谱上所有点有关。

(6)频谱图中的横纵坐标分别表示输入图像在横纵坐标的空间频率。频谱图的中心亮点,是0频率点。往外,频率增大;同一圆周上的点,频率相同。频谱图的x轴的最右边点(无论是不是亮点),表示图像水平方向上的最大频率。

频谱图的任意点A到中心点O的距离|OA|用来表示频率。

7)深度理解:频谱图的中心为0频率点,可以视为直流分量,这一点表示完全没有灰度变化的部分的能量高低。以该点为圆心做同心圆,半径越大,表示频率越大;亮度越大,表示能量越大。举例如下:

①一张全黑的图,频谱图为全黑。(图像无灰度变化,全部为黑色因此也无能量)

②一张灰色的图,频谱图表现为一个在中心上的单像素白色方块。(图像无灰度变化,因此能量集中在0频率点上)

③一张全白的图,频谱图表现为一个在中心上的单像素白色方块,方块能量值大于上面灰色图像频谱图的能量。(图像无灰度变化,因此能量集中在0频率点上)

  • 3.3频谱图的组成

信号的频谱由两部分构成:幅度谱和相位谱。

1.幅度谱:在傅里叶分析中,把各个分量的幅度|Fn|或Cn随着频率的变化称为信号的幅度谱。 

                                                             \left | F(u,v) \right |=[Re(u,v)^{2}+Im(u,v)^{2}]^{\frac{1}{2}}

显然,幅度谱关于原点对称,即\left | F(-u,-v) \right |=\left | F(u,v) \right |

2.相位谱:把各个分量的相位φn随着频率变化称为信号的相位谱。 

                                                          \varphi (u,v)=arctan\frac{Im(u,v)}{Re(u,v)}

相位谱表面上看并不那么直观,但它隐含着实部与虚部之间的某种比例关系,因此与图像结构息息相关。通过幅度谱与相位谱,可以还原频谱:

                                                                F(u,v)=\left | F(u,v) \right |e^{j\varphi (u,v)}

3.功率谱:功率谱或有时叫能量谱(power spectrum),或又叫功率密度谱(power density spectrum),或叫谱密度(spectral density或power spectral density)

如果一个信号的功率谱为p_{xx}(\omega ),则该信号的总能量为:

                                                                 E=\int_{-\infty }^{+\infty }p_{xx}(\omega )d_{\omega }

其中\omega为信号的频率。即对所有频率下的能量积分或求和,就是信号的总能量。从这里也可以看出,功率谱表达的是信号某个频率下所拥有的能量。事实上,功率谱和直方图有很大的相似性。当直方图用于统计一个信号,每个频率区间中的能量时,其意义就和功率谱一致。如何计算信号的功率谱呢?维纳-辛钦定理(Wiener-Khinchine Theorem)给出了一种计算方法:一个信号的功率谱密度就是该信号自相关函数的傅里叶变换。如下式:

p_{xx}(s )=\Im \left \{ R_{ff}(\tau ) \right \}=\Im \left \{ f(t)\ast \bar{f}(-t)\right \}=F(s)F(-s)=F(s)F^{\ast }(s)=\left | F(s) \right |^{2}=\left | F(u,v) \right |^{2}=Re(u,v)^{2}+Im(u,v)^{2}

其中F(s)f(t)的傅里叶变换,F^{\ast }(s)F(s)的复共轭。所以,当知道一个信号的傅里叶变换时,也可以直接求出该信号的功率谱。

每个信号f(t)只有唯一的功率谱,虽然反过来未必成立。但功率谱是信号的一种属性。有这种属性,再加上别的一些属性,就可以用于区分信号了。比如在图像处理里,将图像函数看做一个信号函数,对图像某一区块其进行上述标准化互相关函数中讲到的亮度和对比度不变性处理后,进行傅里叶变换,并最后算出图像功率谱,于是就有了一个很好的以频率表达的可用于模板匹配的模板属性。这就是图像处理中所说的,把对图像处理的时空域内思考,转化到频域。可以使一些在时空域较难处理的问题,在频域里找到直观简便的解决方案。

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的路飞桑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值