Datawhale-机器学习算法-Task4 条件随机场

一. 马尔可夫过程

1.1定义

假设一个随机过程中, t n t_n tn 时刻的状态 x n x_n xn的条件发布,只与其前一状态 x n − 1 x_{n-1} xn1 相关,即:

P ( x n ∣ x 1 , x 2 , . . . , x n − 1 ) = P ( x n ∣ x n − 1 ) P(x_n|x_1,x_2,...,x_{n-1}) = P(x_n|x_{n-1}) P(xnx1,x2,...,xn1)=P(xnxn1)

则将其称为 马尔可夫过程。
在这里插入图片描述

1.2隐马尔科夫算法

1.2.1定义

隐马尔科夫算法是对含有未知参数(隐状态)的马尔可夫链进行建模的生成模型,如下图所示:
在这里插入图片描述
在隐马尔科夫模型中,包含隐状态 和 观察状态,隐状态 x i x_i xi 对于观察者而言是不可见的,而观察状态 y i y_i yi 对于观察者而言是可见的。隐状态间存在转移概率,隐状态 x i x_i xi到对应的观察状态 y i y_i yi 间存在输出概率。

1.2.2假设

  1. 假设隐状态 x i x_i xi 的状态满足马尔可夫过程,i时刻的状态 x i x_i xi 的条件分布,仅与其前一个状态 x i − 1 x_{i-1} xi1相关,即:

P ( x i ∣ x 1 , x 2 , . . . , x i − 1 ) = P ( x i ∣ x i − 1 ) P(x_i|x_1,x_2,...,x_{i-1}) = P(x_i|x_{i-1}) P(xix1,x2,...,xi1)=P(xixi1)

  1. 假设观测序列中各个状态仅取决于它所对应的隐状态,即:

P ( y i ∣ x 1 , x 2 , . . . , x i − 1 , y 1 , y 2 , . . . , y i − 1 , y i + 1 , . . . ) = P ( y i ∣ x i ) P(y_i|x_1,x_2,...,x_{i-1},y_1,y_2,...,y_{i-1},y_{i+1},...) = P(y_i|x_{i}) P(yix1,x2,...,xi1,y1,y2,...,yi1,yi+1,...)=P(yixi)

1.2.3存在问题

在序列标注问题中,隐状态(标注)不仅和单个观测状态相关,还和观察序列的长度、上下文等信息相关。例如词性标注问题中,一个词被标注为动词还是名词,不仅与它本身以及它前一个词的标注有关,还依赖于上下文中的其他词。

二. 条件随机场 (以线性链条件随机场为例)

2.1定义

给定 X = ( x 1 , x 2 , . . . , x n ) X=(x_1,x_2,...,x_n) X=(x1,x2,...,xn) Y = ( y 1 , y 2 , . . . , y n ) Y=(y_1,y_2,...,y_n) Y=(y1,y2,...,yn) 均为线性链表示的随机变量序列,若在给随机变量序列 X 的条件下,随机变量序列 Y 的条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) 构成条件随机场,即满足马尔可夫性:

P ( y i ∣ x 1 , x 2 , . . . , x i − 1 , y 1 , y 2 , . . . , y i − 1 , y i + 1 ) = P ( y i ∣ x , y i − 1 , y i + 1 ) P(y_i|x_1,x_2,...,x_{i-1},y_1,y_2,...,y_{i-1},y_{i+1}) = P(y_i|x,y_{i-1},y_{i+1}) P(yix1,x2,...,xi1,y1,y2,...,yi1,yi+1)=P(yix,yi1,yi+1)

则称为 P(Y|X) 为线性链条件随机场。

通过去除了隐马尔科夫算法中的观测状态相互独立假设,使算法在计算当前隐状态 x i x_i xi时,会考虑整个观测序列,从而获得更高的表达能力,并进行全局归一化解决标注偏置问题。

在这里插入图片描述

2.2参数化形式

p ( y ∣ x ) = 1 Z ( x ) ∏ i = 1 n exp ⁡ ( ∑ i , k λ k t k ( y i − 1 , y i , x , i ) + ∑ i , l μ l s l ( y i , x , i ) ) p\left(y | x\right)=\frac{1}{Z\left(x\right)} \prod_{i=1}^{n} \exp \left(\sum_{i, k} \lambda_{k} t_{k}\left(y_{i-1}, y_{i}, x, i\right)+\sum_{i, l} \mu_{l} s_{l}\left(y_{i}, x, i\right)\right) p(yx)=Z(x)1i=1nexpi,kλktk(yi1,yi,x,i)+i,lμlsl(yi,x,i)

其中:

Z ( x ) Z(x) Z(x) 为归一化因子,是在全局范围进行归一化,枚举了整个隐状态序列 x 1 … n x_{1…n} x1n的全部可能,从而解决了局部归一化带来的标注偏置问题。

Z ( x ) = ∑ y exp ⁡ ( ∑ i , k λ x t k ( y i − 1 , y i , x , i ) + ∑ i , l μ l s l ( y i , x , i ) ) Z(x)=\sum_{y} \exp \left(\sum_{i, k} \lambda_{x} t_{k}\left(y_{i-1}, y_{i}, x, i\right)+\sum_{i, l} \mu_{l} s_{l}\left(y_{i}, x, i\right)\right) Z(x)=yexpi,kλxtk(yi1,yi,x,i)+i,lμlsl(yi,x,i)

t k t_k tk 为定义在边上的特征函数,转移特征,依赖于前一个和当前位置

s 1 s_1 s1 为定义在节点上的特征函数,状态特征,依赖于当前位置。

2.3简化形式

因为条件随机场中同一特征在各个位置都有定义,所以可以对同一个特征在各个位置求和,将局部特征函数转化为一个全局特征函数,这样就可以将条件随机场写成权值向量和特征向量的内积形式,即条件随机场的简化形式。

step 1

将转移特征和状态特征及其权值用统一的符号表示,设有k1个转移特征, k 2 k_2 k2个状态特征, K = k 1 + k 2 K=k_1+k_2 K=k1+k2,记

f k ( y i − 1 , y i , x , i ) = { t k ( y i − 1 , y i , x , i ) , k = 1 , 2 , ⋯   , K 1 s i ( y i , x , i ) , k = K 1 + l ; l = 1 , 2 , ⋯   , K 2 f_{k}\left(y_{i-1}, y_{i}, x, i\right)=\left\{\begin{array}{lc} t_{k}\left(y_{i-1}, y_{i}, x, i\right), & k=1,2, \cdots, K_{1} \\ s_{i}\left(y_{i}, x, i\right), & k=K_{1}+l ; l=1,2, \cdots, K_{2} \end{array}\right. fk(yi1,yi,x,i)={tk(yi1,yi,x,i),si(yi,x,i),k=1,2,,K1k=K1+l;l=1,2,,K2

step 2

对转移与状态特征在各个位置i求和,记作

f k ( y , x ) = ∑ i = 1 n f k ( y i − 1 , y i , x , i ) , k = 1 , 2 , ⋯   , K f_{k}(y, x)=\sum_{i=1}^{n} f_{k}\left(y_{i-1}, y_{i}, x, i\right), \quad k=1,2, \cdots, K fk(y,x)=i=1nfk(yi1,yi,x,i),k=1,2,,K

step 3

λ x \lambda_{x} λx μ l \mu_{l} μl 用统一的权重表示,记作

w k = { λ x , k = 1 , 2 , ⋯   , K 1 μ 1 , k = K 1 + l ; l = 1 , 2 , ⋯   , K 2 w_{k}=\left\{\begin{array}{ll} \lambda_{x}, & k=1,2, \cdots, K_{1} \\ \mu_{1}, & k=K_{1}+l ; l=1,2, \cdots, K_{2} \end{array}\right. wk={λx,μ1,k=1,2,,K1k=K1+l;l=1,2,,K2

step 4

转化后的条件随机场可表示为:

P ( y ∣ x ) = 1 Z ( x ) exp ⁡ ∑ k = 1 K w k f k ( y , x ) Z ( x ) = ∑ y exp ⁡ ∑ k = 1 K w k f k ( y , x ) \begin{aligned} P(y | x) &=\frac{1}{Z(x)} \exp \sum_{k=1}^{K} w_{k} f_{k}(y, x) \\ Z(x) &=\sum_{y} \exp \sum_{k=1}^{K} w_{k} f_{k}(y, x) \end{aligned} P(yx)Z(x)=Z(x)1expk=1Kwkfk(y,x)=yexpk=1Kwkfk(y,x)

step 5

w w w 表示权重向量:

w = ( w 1 , w 2 , . . . , w K ) T w = (w_1,w_2,...,w_K)^T w=(w1,w2,...,wK)T

F ( y , x ) F(y,x) F(y,x) 表示特征向量,即

F ( y , x ) = ( f 1 ( y , x ) , f 2 ( y , x ) , ⋯   , f x ( y , x ) ) T F(y, x)=\left(f_{1}(y, x), f_{2}(y, x), \cdots, f_{x}(y, x)\right)^{\mathrm{T}} F(y,x)=(f1(y,x),f2(y,x),,fx(y,x))T

则,条件随机场写成内积形式为:

P ∗ ( y ∣ x ) = exp ⁡ ( w ⋅ F ( y , x ) ) Z x ( x ) Z x ( x ) = ∑ Y exp ⁡ ( w ⋅ F ( y , x ) ) \begin{array}{c} P_{*}(y | x)=\frac{\exp (w \cdot F(y, x))}{Z_{x}(x)} \\ Z_{x}(x)=\sum_{Y} \exp (w \cdot F(y, x)) \end{array} P(yx)=Zx(x)exp(wF(y,x))Zx(x)=Yexp(wF(y,x))

2.3基本问题

条件随机场包含概率计算问题、学习问题和预测问题三个问题。

  1. 概率计算问题:已知模型的所有参数,计算观测序列 Y Y Y 出现的概率,常用方法:前向和后向算法;
  1. 学习问题:已知观测序列 Y Y Y,求解使得该观测序列概率最大的模型参数,包括隐状态序列、隐状态间的转移概率分布和从隐状态到观测状态的概率分布,常用方法:Baum-Wehch 算法;
  1. 预测问题:一直模型所有参数和观测序列 Y Y Y ,计算最可能的隐状态序列 X X X,常用算法:维特比算法。

2.3.1概率计算问题

给定条件随机场 P ( Y ∣ X ) P(Y|X) P(YX),输入序列 x x x 和 输出序列 y y y;

计算条件概率

P ( Y i = y i ∣ x ) , P ( Y i − 1 = y i − 1 , Y i = y i ∣ x ) P(Y_i=y_i|x), P(Y_{i-1} = y_{i-1},Y_i = y_i|x) P(Yi=yix),P(Yi1=yi1,Yi=yix)

计算相应的数学期望问题;

前向-后向算法
step 1 前向计算

对观测序列 x x x 的每个位置 i = 1 , 2 , . . . , n + 1 i=1,2,...,n+1 i=1,2,...,n+1 ,定义一个 m m m 阶矩阵( m m m 为标记 Y i Y_i Yi取值的个数)

M t ( x ) = [ M t ( y t − 1 , y t ∣ x ) ] M t ( y t − 1 , y t ∣ x ) = exp ⁡ ( W t ( y t − 1 , y i ∣ x ) ) W t ( y t − 1 , y t ∣ x ) = ∑ t = 1 K w k f k ( y i − 1 , y i , x , i ) \begin{array}{c} M_{t}(x)=\left[M_{t}\left(y_{t-1}, y_{t} | x\right)\right] \\ M_{t}\left(y_{t-1}, y_{t} | x\right)=\exp \left(W_{t}\left(y_{t-1}, y_{i} | x\right)\right) \\ W_{t}\left(y_{t-1}, y_{t} | x\right)=\sum_{t=1}^{K} w_{k} f_{k}\left(y_{i-1}, y_{i}, x, i\right) \end{array} Mt(x)=[Mt(yt1,ytx)]Mt(yt1,ytx)=exp(Wt(yt1,yix))Wt(yt1,ytx)=t=1Kwkfk(yi1,yi,x,i)

对每个指标 i = 0 , 1 , . . . , n + 1 i=0,1,...,n+1 i=0,1,...,n+1,定义前向向量 α i ( x ) \alpha_{i}(x) αi(x),则递推公式:

α i ⊤ ( y i ∣ x ) = α i − 1 ⊤ ( y i − 1 ∣ x ) M i ( y i − 1 , y i ∣ x ) , i = 1 , 2 , ⋯   , n + 1 \alpha_{i}^{\top}\left(y_{i} | x\right)=\alpha_{i-1}^{\top}\left(y_{i-1} | x\right) M_{i}\left(y_{i-1}, y_{i} | x\right), \quad i=1,2, \cdots, n+1 αi(yix)=αi1(yi1x)Mi(yi1,yix),i=1,2,,n+1

其中,

α 0 ( y ∣ x ) = { 1 , y =  start  0 ,  否则  \alpha_{0}(y | x)=\left\{\begin{array}{ll} 1, & y=\text { start } \\ 0, & \text { 否则 } \end{array}\right. α0(yx)={1,0,y= start  否则 

step 2 后向计算

对每个指标 i = 0 , 1 , . . . , n + 1 i=0,1,...,n+1 i=0,1,...,n+1,定义前向向量 β i ( x ) \beta_{i}(x) βi(x),则递推公式:

β n + 1 ( y n + 1 ∣ x ) = { 1 , y n + 1 =  stop  0 ,  否则  β i ( y i ∣ x ) = M i ( y i , y i + 1 ∣ x ) β i − 1 ( y i + 1 ∣ x ) \begin{aligned} &\beta_{n+1}\left(y_{n+1} | x\right)=\left\{\begin{array}{ll} 1, & y_{n+1}=\text { stop } \\ 0, & \text { 否则 } \end{array}\right.\\ &\beta_{i}\left(y_{i} | x\right)=M_{i}\left(y_{i}, y_{i+1} | x\right) \beta_{i-1}\left(y_{i+1} | x\right) \end{aligned} βn+1(yn+1x)={1,0,yn+1= stop  否则 βi(yix)=Mi(yi,yi+1x)βi1(yi+1x)

step 3

Z ( x ) = α n T ( x ) ⋅ 1 = 1 T ⋅ β 1 ( x ) Z(x)=\alpha_{n}^{\mathrm{T}}(x) \cdot 1=\mathbf{1}^{\mathrm{T}} \cdot \beta_{1}(x) Z(x)=αnT(x)1=1Tβ1(x)

step 4 概率计算

所以,标注序列在位置 i i i 是标注 y i y_i yi 的条件概率为:

P ( Y i = y i ∣ x ) = α i T ( y i ∣ x ) β i ( y i ∣ x ) Z ( x ) P ( Y t − 1 = y i − 1 , Y i = y i ∣ x ) = α i − 1 ⊤ ( y i − 1 ∣ x ) M i ( y i − 1 , y i ∣ x ) β i ( y i ∣ x ) Z ( x ) \begin{array}{c} P\left(Y_{i}=y_{i} | x\right)=\frac{\alpha_{i}^{\mathrm{T}}\left(y_{i} | x\right) \beta_{i}\left(y_{i} | x\right)}{Z(x)} \\ P\left(Y_{t-1}=y_{i-1}, Y_{i}=y_{i} | x\right)=\frac{\alpha_{i-1}^{\top}\left(y_{i-1} | x\right) M_{i}\left(y_{i-1}, y_{i} | x\right) \beta_{i}\left(y_{i} | x\right)}{Z(x)} \end{array} P(Yi=yix)=Z(x)αiT(yix)βi(yix)P(Yt1=yi1,Yi=yix)=Z(x)αi1(yi1x)Mi(yi1,yix)βi(yix)

其中,

Z ( x ) = α s T ( x ) ⋅ 1 Z(x)=\alpha_{s}^{T}(x) \cdot \mathbf{1} Z(x)=αsT(x)1

step 5 期望值计算

通过利用前向-后向向量,计算特征函数关于联合概率分布 P ( X , Y ) P(X,Y) P(X,Y) 和 条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) 的数学期望,即特征函数 f k f_k fk 关于条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) 的数学期望:

E P(r  ) ( f , 1 ) = ∑ y P ( y ∣ x ) f 1 ( y , x ) = ∑ i = 1 n + 1 ∑ n = 1 f 1 ( y i − 1 , y i , x , i ) α i − 1 ⊤ ( y i − 1 ∣ x ) M i ( y i 1 , y i ∣ x ) β i ( y i ∣ x ) Z ( x ) k = 1 , 2 , ⋯   , K \begin{aligned} E_{ \text {P(r } )(f, 1)} &=\sum_{y} P(y | x) f_{1}(y, x) \\ &=\sum_{i=1}^{n+1} \sum_{n=1} f_{1}\left(y_{i-1}, y_{i}, x, i\right) \frac{\alpha_{i-1}^{\top}\left(y_{i-1} | x\right) M_{i}\left(y_{i_{1}}, y_{i} | x\right) \beta_{i}\left(y_{i} | x\right)}{Z(x)} \\ & k=1,2, \cdots, K \end{aligned} EP(r )(f,1)=yP(yx)f1(y,x)=i=1n+1n=1f1(yi1,yi,x,i)Z(x)αi1(yi1x)Mi(yi1,yix)βi(yix)k=1,2,,K

其中:

Z ( x ) = α s T ( x ) ⋅ 1 Z(x)=\alpha_{s}^{T}(x) \cdot \mathbf{1} Z(x)=αsT(x)1

2.3.2学习问题

这里主要介绍一下 BFGS 算法的思路。

输入:特征函数 f 1 , f 2 , . . . , f n f_1,f_2,...,f_n f1,f2,...,fn:经验分布 P ~ ( X , Y ) \widetilde{P}(X,Y) P (X,Y)

输出:最优参数值 w ^ \widehat{w} w ,最优模型 P w ^ ( y ∣ x ) P_{\widehat{w}}(y|x) Pw (yx)

  1. 选定初始点 w^{(0)}, 取 B 0 B_0 B0 为正定对称矩阵,k = 0;
  2. 计算 g k = g ( w ( k ) ) g_k = g(w^(k)) gk=g(w(k)),若 g k = 0 g_k = 0 gk=0 ,则停止计算,否则转 (3) ;
  3. 利用 B k p k = − g k B_k p_k = -g_k Bkpk=gk 计算 p k p_k pk
  4. 一维搜索:求 λ k \lambda_k λk使得

f ( w ( k ) + λ k p k ) = min ⁡ λ > 0 f ( w ( k ) + λ p k ) f\left(w^{(k)}+\lambda_{k} p_{k}\right)=\min _{\lambda>0} f\left(w^{(k)}+\lambda p_{k}\right) f(w(k)+λkpk)=λ>0minf(w(k)+λpk)

  1. w ( k + 1 ) = w ( k ) + λ k ∗ p k w^{(k+1)} = w^{(k)} + \lambda_k * p_k w(k+1)=w(k)+λkpk

  2. 计算 g k + 1 g_{k+1} gk+1 = g(w^{(k+1)}),

    g k = 0 g_k = 0 gk=0, 则停止计算;否则,利用下面公式计算 B k + 1 B_{k+1} Bk+1:

B k + 1 = B k + y k y k ⊤ y k ⊤ δ k − B k δ k δ k ⊤ B k δ k ⊤ B k δ k y k = g k + 1 − g k , δ k = w ( k + 1 ) − w ( k ) \begin{aligned} &B_{k+1}=B_{k}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} \delta_{k}}-\frac{B_{k} \delta_{k} \delta_{k}^{\top} B_{k}}{\delta_{k}^{\top} B_{k} \delta_{k}}\\ &y_{k}=g_{k+1}-g_{k}, \quad \delta_{k}=w^{(k+1)}-w^{(k)} \end{aligned} Bk+1=Bk+ykδkykykδkBkδkBkδkδkBkyk=gk+1gk,δk=w(k+1)w(k)

  1. k = k + 1 k=k+1 k=k+1,转步骤(3);

2.3.3预测问题

对于预测问题,常用的方法是维特比算法,其思路如下:

输入:模型特征向量 F ( y , x ) F(y,x) F(y,x) 和权重向量 w w w,输入序列(观测序列) x = x 1 , x 2 , . . . , x n x={x_1,x_2,...,x_n} x=x1,x2,...,xn

输出:条件概率最大的输出序列(标记序列) y ∗ = ( y 1 ∗ , y 2 ∗ , . . . , y n ∗ ) y^{*}= (y_1^*,y_2^*,...,y_n^*) y=(y1,y2,...,yn),也就是最优路径;

  1. 初始化

δ 1 ( j ) = w ⋅ F 1 ( y 0 = start , y 1 = j , x ) , j = 1 , 2 , ⋯   , m \delta_{1}(j)=w \cdot F_{1}\left(y_{0}=\text {start}, y_{1}=j, x\right), \quad j=1,2, \cdots, m δ1(j)=wF1(y0=start,y1=j,x),j=1,2,,m

  1. 递推,对 i = 2 , 3 , . . . , n i=2,3,...,n i=2,3,...,n

δ t ( l ) = max ⁡ 1 ⩽ j ≤ n { δ t − 1 ( j ) + w ⋅ F t ( y t − 1 = j , y t = l , x ) } , l = 1 , 2 , ⋯   , m Ψ i ( l ) = arg ⁡ max ⁡ i ≤ j ∈ m { δ t − 1 ( j ) + w ⋅ F i ( y t − 1 = j , y i = l , x ) } , l = 1 , 2 , ⋯   , m \begin{array}{c} \delta_{t}(l)=\max _{1 \leqslant j \leq n}\left\{\delta_{t-1}(j)+w \cdot F_{t}\left(y_{t-1}=j, y_{t}=l, x\right)\right\}, \quad l=1,2, \cdots, m \\ \Psi_{i}(l)=\arg \max _{i \leq j \in m}\left\{\delta_{t-1}(j)+w \cdot F_{i}\left(y_{t-1}=j, y_{i}=l, x\right)\right\}, \quad l=1,2, \cdots, m \end{array} δt(l)=max1jn{δt1(j)+wFt(yt1=j,yt=l,x)},l=1,2,,mΨi(l)=argmaxijm{δt1(j)+wFi(yt1=j,yi=l,x)},l=1,2,,m

  1. 终止

max ⁡ y ( w ⋅ F ( y , x ) ) = max ⁡ 1 ⩽ j ⩽ m δ n ( j ) y n ∗ = arg ⁡ max ⁡ 1 ⩽ j ⩽ m δ n ( j ) \begin{array}{c} \max _{y}(w \cdot F(y, x))=\max _{1 \leqslant j \leqslant m} \delta_{n}(j) \\ y_{n}^{*}=\arg \max _{1 \leqslant j \leqslant m} \delta_{n}(j) \end{array} maxy(wF(y,x))=max1jmδn(j)yn=argmax1jmδn(j)

  1. 返回路径

y i ∗ = Ψ i + 1 ( y i + 1 ∗ ) , i = n − 1 , n − 2 , ⋯   , 1 y_{i}^{*}=\Psi_{i+1}\left(y_{i+1}^{*}\right), \quad i=n-1, n-2, \cdots, 1 yi=Ψi+1(yi+1),i=n1,n2,,1

求得最优路径 y ∗ = ( y 1 ∗ , y 2 ∗ , . . . , y n ∗ ) y^{*}= (y_1^*,y_2^*,...,y_n^*) y=(y1,y2,...,yn)

三.例子说明

利用维特比算法计算给定输入序列 x x x 对应的最优输出序列 y ∗ y^* y

max ⁡ ∑ i = 1 3 w ⋅ F i ( y i − 1 , y i , x ) \max \sum_{i=1}^{3} w \cdot F_{i}\left(y_{i-1}, y_{i}, x\right) maxi=13wFi(yi1,yi,x)

  1. 初始化

δ 1 ( j ) = w ⋅ F 1 ( y 0 = start ⁡ , y 1 = j , x ) , j = 1 , 2 i = 1 , δ 1 ( 1 ) = 1 , δ 1 ( 2 ) = 0.5 \begin{array}{l} \delta_{1}(j)=w \cdot F_{1}\left(y_{0}=\operatorname{start}, y_{1}=j, x\right), \quad j=1,2 \\ i=1, \quad \delta_{1}(1)=1, \quad \delta_{1}(2)=0.5 \end{array} δ1(j)=wF1(y0=start,y1=j,x),j=1,2i=1,δ1(1)=1,δ1(2)=0.5

  1. 递推,对 i = 2 , 3 , . . . , n i=2,3,...,n i=2,3,...,n

i = 2 δ 2 ( l ) = max ⁡ { δ 1 ( j ) + w ⋅ F 2 ( j , l , x ) } δ 2 ( 1 ) = max ⁡ { 1 + λ 2 t 2 , 0.5 + λ 4 t 4 } = 1.6 , Ψ 2 ( 1 ) = 1 δ 2 ( 2 ) = max ⁡ { 1 + λ 1 t 1 + μ 2 s 2 , 0.5 + μ 2 s 2 } = 2.5 , Ψ 3 ( 2 ) = 1 \begin{aligned} i=2 & \delta_{2}(l)=\max \left\{\delta_{1}(j)+w \cdot F_{2}(j, l, x)\right\} \\ & \delta_{2}(1)=\max \left\{1+\lambda_{2} t_{2}, 0.5+\lambda_{4} t_{4}\right\}=1.6, \quad \Psi_{2}(1)=1 \\ & \delta_{2}(2)=\max \left\{1+\lambda_{1} t_{1}+\mu_{2} s_{2}, 0.5+\mu_{2} s_{2}\right\}=2.5, \quad \Psi_{3}(2)=1 \end{aligned} i=2δ2(l)=max{δ1(j)+wF2(j,l,x)}δ2(1)=max{1+λ2t2,0.5+λ4t4}=1.6,Ψ2(1)=1δ2(2)=max{1+λ1t1+μ2s2,0.5+μ2s2}=2.5,Ψ3(2)=1
i = 3 δ 3 ( l ) = max ⁡ { δ 2 ( j ) + w ⋅ F 3 ( j , l , x ) } δ 3 ( 1 ) = max ⁡ { 1.6 + μ s s s , 2.5 + λ 5 t 3 + μ 3 s 3 } = 4.3 , Ψ 1 ( 1 ) = 2 δ 3 ( 2 ) = max ⁡ { 1.6 + λ t 1 + μ 4 s 4 , 2.5 + λ 5 t 5 + μ 4 s 4 } = 3.2 , Ψ 3 ( 2 ) = 1 \begin{aligned} i=3 & \delta_{3}(l)=\max \left\{\delta_{2}(j)+w \cdot F_{3}(j, l, x)\right\} \\ & \delta_{3}(1)=\max \left\{1.6+\mu_{s} s_{s}, 2.5+\lambda_{5} t_{3}+\mu_{3} s_{3}\right\}=4.3, \quad \Psi_{1}(1)=2 \\ & \delta_{3}(2)=\max \left\{1.6+\lambda t_{1}+\mu_{4} s_{4}, 2.5+\lambda_{5} t_{5}+\mu_{4} s_{4}\right\}=3.2, \quad \Psi_{3}(2)=1 \end{aligned} i=3δ3(l)=max{δ2(j)+wF3(j,l,x)}δ3(1)=max{1.6+μsss,2.5+λ5t3+μ3s3}=4.3,Ψ1(1)=2δ3(2)=max{1.6+λt1+μ4s4,2.5+λ5t5+μ4s4}=3.2,Ψ3(2)=1
3. 终止

max ⁡ y ( w ⋅ F ( y , x ) ) = max ⁡ δ 3 ( l ) = δ 3 ( 1 ) = 4.3 y 3 ∗ = arg ⁡ max ⁡ 1 δ 3 ( l ) = 1 \begin{array}{c} \max _{y}(w \cdot F(y, x))=\max \delta_{3}(l)=\delta_{3}(1)=4.3 \\ y_{3}^{*}=\arg \max _{1} \delta_{3}(l)=1 \end{array} maxy(wF(y,x))=maxδ3(l)=δ3(1)=4.3y3=argmax1δ3(l)=1

  1. 返回路径

y 2 ∗ = Ψ 3 ( y 3 ∗ ) = Ψ 3 ( 1 ) = 2 y 1 ∗ = Ψ 2 ( y 2 ∗ ) = Ψ 2 ( 2 ) = 1 \begin{aligned} &y_{2}^{*}=\Psi_{3}\left(y_{3}^{*}\right)=\Psi_{3}(1)=2\\ &y_{1}^{*}=\Psi_{2}\left(y_{2}^{*}\right)=\Psi_{2}(2)=1 \end{aligned} y2=Ψ3(y3)=Ψ3(1)=2y1=Ψ2(y2)=Ψ2(2)=1

求得最优路径 y ∗ = ( y 1 ∗ , y 2 ∗ , . . . , y n ∗ ) = ( 1 , 2 , 1 ) y^{*}= (y_1^*,y_2^*,...,y_n^*) = (1,2,1) y=(y1,y2,...,yn)=(1,2,1)

import numpy as np
 
class CRF(object):
    '''实现条件随机场预测问题的维特比算法
    '''
    def __init__(self, V, VW, E, EW):
        '''
        :param V:是定义在节点上的特征函数,称为状态特征
        :param VW:是V对应的权值
        :param E:是定义在边上的特征函数,称为转移特征
        :param EW:是E对应的权值
        '''
        self.V  = V  #点分布表
        self.VW = VW #点权值表
        self.E  = E  #边分布表
        self.EW = EW #边权值表
        self.D  = [] #Delta表,最大非规范化概率的局部状态路径概率
        self.P  = [] #Psi表,当前状态和最优前导状态的索引表s
        self.BP = [] #BestPath,最优路径
        return 
        
    def Viterbi(self):
        '''
        条件随机场预测问题的维特比算法,此算法一定要结合CRF参数化形式对应的状态路径图来理解,更容易理解.
        '''
        self.D = np.full(shape=(np.shape(self.V)), fill_value=.0)
        self.P = np.full(shape=(np.shape(self.V)), fill_value=.0)
        for i in range(np.shape(self.V)[0]):
            #初始化
            if 0 == i:
                self.D[i] = np.multiply(self.V[i], self.VW[i])
                self.P[i] = np.array([0, 0])
                print('self.V[%d]='%i, self.V[i], 'self.VW[%d]='%i, self.VW[i], 'self.D[%d]='%i, self.D[i])
                print('self.P:', self.P)
                pass
            #递推求解布局最优状态路径
            else:
                for y in range(np.shape(self.V)[1]): #delta[i][y=1,2...]
                    for l in range(np.shape(self.V)[1]): #V[i-1][l=1,2...]
                        delta = 0.0
                        delta += self.D[i-1, l]                      #前导状态的最优状态路径的概率
                        delta += self.E[i-1][l,y]*self.EW[i-1][l,y]  #前导状态到当前状体的转移概率
                        delta += self.V[i,y]*self.VW[i,y]            #当前状态的概率
                        print('(x%d,y=%d)-->(x%d,y=%d):%.2f + %.2f + %.2f='%(i-1, l, i, y, \
                              self.D[i-1, l], \
                              self.E[i-1][l,y]*self.EW[i-1][l,y], \
                              self.V[i,y]*self.VW[i,y]), delta)
                        if 0 == l or delta > self.D[i, y]:
                            self.D[i, y] = delta
                            self.P[i, y] = l
                    print('self.D[x%d,y=%d]=%.2f\n'%(i, y, self.D[i,y]))
        print('self.Delta:\n', self.D)
        print('self.Psi:\n', self.P)
        
        #返回,得到所有的最优前导状态
        N = np.shape(self.V)[0]
        self.BP = np.full(shape=(N,), fill_value=0.0)
        t_range = -1 * np.array(sorted(-1*np.arange(N)))
        for t in t_range:
            if N-1 == t:#得到最优状态
                self.BP[t] = np.argmax(self.D[-1])
            else: #得到最优前导状态
                self.BP[t] = self.P[t+1, int(self.BP[t+1])]
        
        #最优状态路径表现在存储的是状态的下标,我们执行存储值+1转换成示例中的状态值
        #也可以不用转换,只要你能理解,self.BP中存储的0是状态1就可以~~~~
        self.BP += 1
        
        print('最优状态路径为:', self.BP)
        return self.BP
        
def CRF_manual():   
    S = np.array([[1,1],   #X1:S(Y1=1), S(Y1=2)
                  [1,1],   #X2:S(Y2=1), S(Y2=2)
                  [1,1]])  #X3:S(Y3=1), S(Y3=1)
    SW = np.array([[1.0, 0.5], #X1:SW(Y1=1), SW(Y1=2)
                   [0.8, 0.5], #X2:SW(Y2=1), SW(Y2=2)
                   [0.8, 0.5]])#X3:SW(Y3=1), SW(Y3=1)
    E = np.array([[[1, 1],  #Edge:Y1=1--->(Y2=1, Y2=2)
                   [1, 0]], #Edge:Y1=2--->(Y2=1, Y2=2)
                  [[0, 1],  #Edge:Y2=1--->(Y3=1, Y3=2) 
                   [1, 1]]])#Edge:Y2=2--->(Y3=1, Y3=2)
    EW= np.array([[[0.6, 1],  #EdgeW:Y1=1--->(Y2=1, Y2=2)
                   [1, 0.0]], #EdgeW:Y1=2--->(Y2=1, Y2=2)
                  [[0.0, 1],  #EdgeW:Y2=1--->(Y3=1, Y3=2)
                   [1, 0.2]]])#EdgeW:Y2=2--->(Y3=1, Y3=2)
    
    crf = CRF(S, SW, E, EW)
    ret = crf.Viterbi()
    print('最优状态路径为:', ret)
    return
    
if __name__=='__main__':
    CRF_manual()

#输出显示
self.V[0]= [1 1] self.VW[0]= [1.  0.5] self.D[0]= [1.  0.5]
self.P: [[0. 0.]
 [0. 0.]
 [0. 0.]]
(x0,y=0)-->(x1,y=0):1.00 + 0.60 + 0.80= 2.4000000000000004
(x0,y=1)-->(x1,y=0):0.50 + 1.00 + 0.80= 2.3
self.D[x1,y=0]=2.40

(x0,y=0)-->(x1,y=1):1.00 + 1.00 + 0.50= 2.5
(x0,y=1)-->(x1,y=1):0.50 + 0.00 + 0.50= 1.0
self.D[x1,y=1]=2.50

(x1,y=0)-->(x2,y=0):2.40 + 0.00 + 0.80= 3.2
(x1,y=1)-->(x2,y=0):2.50 + 1.00 + 0.80= 4.3
self.D[x2,y=0]=4.30

(x1,y=0)-->(x2,y=1):2.40 + 1.00 + 0.50= 3.9000000000000004
(x1,y=1)-->(x2,y=1):2.50 + 0.20 + 0.50= 3.2
self.D[x2,y=1]=3.90

self.Delta:
 [[1.  0.5]
 [2.4 2.5]
 [4.3 3.9]]
self.Psi:
 [[0. 0.]
 [0. 0.]
 [1. 0.]]
最优状态路径为: [1. 2. 1.]
最优状态路径为: [1. 2. 1.]

四.参考

Datawhale-机器学习算法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值