WPF:图像处理(五)迭代法

using System;

namespace Splash.Imaging
{
    /// <summary>
    /// 图像处理:迭代法二值化阈值计算方法
    /// </summary>
    public static partial class Binarize
    {
        /// <summary>
        /// 迭代法计算阈值
        /// </summary>
        /// <param name="grayArray">灰度数组</param>
        /// <returns>二值化阈值</returns> 
        public static Int32 IterativeThreshold(Byte[,] grayArray)
        {   // 建立统计直方图
            Int32[] Histogram = new Int32[256];
            Array.Clear(Histogram, 0, 256);     // 初始化
            foreach (Byte b in grayArray)
            {
                Histogram[b]++;                 // 统计直方图
            }

            // 总的质量矩和图像点数
            Int32 SumC = grayArray.Length;    // 总的图像点数
            Int32 SumU = 0;
            for (Int32 i = 1; i < 256; i++)
            {
                SumU += i * Histogram[i];     // 总的质量矩                
            }

            // 确定初始阈值
            Int32 MinGrayLevel = Array.FindIndex(Histogram, NonZero);       // 最小灰度值
            Int32 MaxGrayLevel = Array.FindLastIndex(Histogram, NonZero);   // 最大灰度值
            Int32 T0 = (MinGrayLevel + MaxGrayLevel) >> 1;
            if (MinGrayLevel != MaxGrayLevel)
            {
                for (Int32 Iteration = 0; Iteration < 100; Iteration++)
                {   // 计算目标的质量矩和点数
                    Int32 U0 = 0;
                    Int32 C0 = 0;
                    for (Int32 i = MinGrayLevel; i <= T0; i++)
                    {   // 目标的质量矩和点数                
                        U0 += i * Histogram[i];
                        C0 += Histogram[i];
                    }

                    // 目标的平均灰度值和背景的平均灰度值的中心值
                    Int32 T1 = (U0 / C0 + (SumU - U0) / (SumC - C0)) >> 1;
                    if (T0 == T1) break; else T0 = T1;
                }
            }

            // 返回最佳阈值
            return T0;
        }        
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值