2.2 矩阵基本运算

矩阵基本运算

矩阵作为有序向量组的整体,可以进行运算,就如同向量作为有序数组的整体。主要运算包括相等,加法和数乘。矩阵运算规则都是根据矩阵乘以向量是矩阵向量组的线性组合推导出来的,即公式(1)。

矩阵相等

两个矩阵 A A A B B B 相等,即对任意向量 x \mathbf{x} x ,需满足 A x = B x A\mathbf{x}=B\mathbf{x} Ax=Bx

首先,进行矩阵形状判断,由于和同样向量 x \mathbf{x} x 相乘,所以矩阵 A A A B B B 必须包含相同数量的向量,即列数相等。矩阵乘以向量的结果是向量,结果向量要相等,维度必须相同,所以矩阵 A A A B B B 中的向量维度必须相同,即行数相等。所以矩阵 A A A B B B 是形状相同的矩阵。

定义 同型矩阵 两个矩阵的行数相等、列数也相等。

其次,当向量 x = e i = ( 0 , ⋯   , 1 , ⋯   , 0 ) , i ∈ [ 1 , m ] \mathbf{x}=\mathbf{e_i} = (0,\cdots,1,\cdots,0),\quad i \in \left[ 1,m \right] x=ei=(0,,1,,0),i[1,m] m m m 维向量 e i \mathbf{e_i} ei m m m 个分量,只有第 i i i 个分量为1,其他分量均为0。此时
A e i = 0 a 1 + 0 a 2 + ⋯ + 1 a i + ⋯ + 0 a n = a i B e i = 0 b 1 + 0 b 2 + ⋯ + 1 b i + ⋯ + 0 b n = b i 所 以 由 A e i = B e i 得 a i = b i f o r a n y i ∈ [ 1 , n ] A\mathbf{e_i} = 0\mathbf{a_1}+0\mathbf{a_2}+\cdots+1\mathbf{a_i}+\cdots+0\mathbf{a_n} = \mathbf{a_i} \\ B\mathbf{e_i} = 0\mathbf{b_1}+0\mathbf{b_2}+\cdots+1\mathbf{b_i}+\cdots+0\mathbf{b_n} = \mathbf{b_i} \\ 所以由 \quad A\mathbf{e_i}=B\mathbf{e_i} \quad 得 \quad \mathbf{a_i} = \mathbf{b_i} \quad for \quad any \quad i \in \left[ 1,n\right] Aei=0a1+0a2++1ai++0an=aiBei=0b1+0b2++1bi++0bn=biAeiBeiai=biforanyi[1,n]
所以矩阵 A A A B B B 每个对应列的向量相等。

定义 矩阵相等 两个矩阵相等,必须是同型矩阵且每个对应的列向量相等。

当矩阵排成二维表格时,需表格形状相同,且每个对应位置的数都相等时,矩阵才相等。

例如,下面两个矩阵相等
A = [ 0 2 1 3 ] B = [ 0 2 1 3 ] A = \left[ \begin{matrix} 0 & 2 \\ 1 & 3 \end{matrix} \right] \qquad B = \left[ \begin{matrix} 0 & 2 \\ 1 & 3 \end{matrix} \right] A=[0123]B=[0123]
下面两个矩阵不相等,因为第2个列向量的第2个分量不同。
A = [ 0 2 1 3 ] B = [ 0 2 1 4 ] A = \left[ \begin{matrix} 0 & 2 \\ 1 & 3 \end{matrix} \right] \qquad B = \left[ \begin{matrix} 0 & 2 \\ 1 & 4 \end{matrix} \right] A=[0123]B=[0124]
下面两个矩阵不相等,因为向量顺序不同。
A = [ 0 2 1 3 ] B = [ 2 0 3 1 ] A = \left[ \begin{matrix} 0 & 2 \\ 1 & 3 \end{matrix} \right] \qquad B = \left[ \begin{matrix} 2 & 0 \\ 3 & 1 \end{matrix} \right] A=[0123]B=[2301]
下面两个矩阵不相等,因为形状不同。
A = [ 0 2 1 3 0 0 ] B = [ 0 2 1 3 ] A = \left[ \begin{matrix} 0 & 2 \\ 1 & 3 \\ 0 & 0 \end{matrix} \right] \qquad B = \left[ \begin{matrix} 0 & 2 \\ 1 & 3 \end{matrix} \right] A=010230B=[0123]

矩阵加法

两个矩阵 A A A B B B 相加,即对任意向量 x \mathbf{x} x ,需满足 C x = A x + B x C\mathbf{x}=A\mathbf{x}+B\mathbf{x} Cx=Ax+Bx ,称矩阵 C C C 是矩阵 A A A B B B 的和,记为 C = A + B C = A+B C=A+B

首先,进行矩阵形状判断,由于和同样向量 x \mathbf{x} x 相乘,所以矩阵 A A A B B B C C C 必须包含相同数量的向量。矩阵乘以向量的结果是向量,结果向量要相等,维度必须相同,所以矩阵 A A A B B B C C C 中的向量维度必须相同。所以矩阵 A A A B B B C C C 必须是同型矩阵。

其次,当向量 x = e i \mathbf{x}=\mathbf{e_i} x=ei ,此时
A e i = 0 a 1 + 0 a 2 + ⋯ + 1 a i + ⋯ + 0 a n = a i B e i = 0 b 1 + 0 b 2 + ⋯ + 1 b i + ⋯ + 0 b n = b i C e i = 0 c 1 + 0 c 2 + ⋯ + 1 c i + ⋯ + 0 c n = c i 所 以 由 C e i = A e i + B e i 得 c i = a i + b i f o r a n y i ∈ [ 1 , n ] A\mathbf{e_i}= 0\mathbf{a_1}+0\mathbf{a_2}+\cdots+1\mathbf{a_i}+\cdots+0\mathbf{a_n}= \mathbf{a_i} \\ B\mathbf{e_i}= 0\mathbf{b_1}+0\mathbf{b_2}+\cdots+1\mathbf{b_i}+\cdots+0\mathbf{b_n}= \mathbf{b_i} \\ C\mathbf{e_i}= 0\mathbf{c_1}+0\mathbf{c_2}+\cdots+1\mathbf{c_i}+\cdots+0\mathbf{c_n}= \mathbf{c_i} \\ 所以由 \quad C\mathbf{e_i} = A\mathbf{e_i} + B\mathbf{e_i} \quad 得 \quad \mathbf{c_i} = \mathbf{a_i} + \mathbf{b_i} \quad for \quad any \quad i \in \left[1,n \right] Aei=0a1+0a2++1ai++0an=aiBei=0b1+0b2++1bi++0bn=biCei=0c1+0c2++1ci++0cn=ciCei=Aei+Beici=ai+biforanyi[1,n]

所以矩阵 C C C 的每个列向量等于 A A A B B B 的对应列向量之和。

定义 矩阵加法 两个矩阵相加,必须是同型矩阵才能相加,结果矩阵的每个列向量等于相加矩阵的对应列向量之和。

例如,下面两个矩阵相加
[ 0 2 1 3 ] + [ 4 6 5 7 ] = [ 0 + 4 2 + 6 1 + 5 3 + 7 ] = [ 4 8 6 10 ] \left[ \begin{matrix} 0 & 2 \\ 1 & 3 \end{matrix} \right] + \left[ \begin{matrix} 4 & 6 \\ 5 & 7 \end{matrix} \right]= \left[ \begin{matrix} 0+4 & 2+6 \\ 1+5 & 3+7 \end{matrix} \right]= \left[ \begin{matrix} 4 & 8 \\ 6 & 10 \end{matrix} \right] [0123]+[4567]=[0+41+52+63+7]=[46810]
当矩阵排成二维表格时,矩阵相加,需表格形状相同,且每个对应位置的数相加即是结果矩阵。

根据矩阵加法定义,矩阵加法满足交换律和结合律,
A + B = B + A ( A + B ) + C = A + ( B + C ) \mathbf{A+B} = \mathbf{B+A} \\ \mathbf{(A+B)+C} = \mathbf{A+(B+C)} A+B=B+A(A+B)+C=A+(B+C)

矩阵数乘

矩阵 A A A 与任意向量 x \mathbf{x} x ,如满足 B x = A ( λ x ) B\mathbf{x}=A\mathbf{(\lambda x)} Bx=A(λx) ,记 B = λ A B=\lambda A B=λA ,为矩阵 A A A 与实数 λ \lambda λ 的数乘。

首先,进行矩阵形状判断,由于和同样向量 x \mathbf{x} x 相乘,所以矩阵 A A A B B B 必须包含相同数量的向量。矩阵乘以向量的结果是向量,结果向量要相等,维度必须相同,所以矩阵 A A A B B B 中的向量维度必须相同。所以矩阵 A A A B B B 是同型矩阵。

其次,当向量 x = e i \mathbf{x}=\mathbf{e_i} x=ei ,此时
A ( λ e i ) = λ 0 a 1 + λ 0 a 2 + ⋯ + λ 1 a i + ⋯ + λ 0 a n = λ a i B e i = 0 b 1 + 0 b 2 + ⋯ + 1 b i + ⋯ + 0 b n = b i 所 以 由 A ( λ e i ) = B e i 得 b i = λ a i f o r a n y i ∈ [ 1 , n ] A\mathbf{(\lambda e_i)}= \lambda 0\mathbf{a_1}+\lambda 0\mathbf{a_2}+\cdots+\lambda 1\mathbf{a_i}+\cdots+\lambda 0\mathbf{a_n}= \lambda \mathbf{a_i} \\ B\mathbf{e_i}= 0\mathbf{b_1}+0\mathbf{b_2}+\cdots+1\mathbf{b_i}+\cdots+0\mathbf{b_n}= \mathbf{b_i} \\ 所以由 \quad A\mathbf{(\lambda e_i)}=B\mathbf{e_i} \quad 得 \quad \mathbf{b_i} = \lambda \mathbf{a_i} \quad for \quad any \quad i \in \left[ 1,n\right] A(λei)=λ0a1+λ0a2++λ1ai++λ0an=λaiBei=0b1+0b2++1bi++0bn=biA(λei)Beibi=λaiforanyi[1,n]
所以矩阵 A A A 的数乘结果为每个向量数乘。

定义 矩阵数乘 矩阵每个列向量数乘。

当矩阵排成二维表格时,每个位置的数都乘以相同实数。

例如,下面矩阵数乘2
2 A = 2 [ 0 2 1 3 ] = [ 0 4 2 6 ] 2A = 2 \left[ \begin{matrix} 0 & 2 \\ 1 & 3 \end{matrix} \right]= \left[ \begin{matrix} 0 & 4 \\ 2 & 6 \end{matrix} \right] 2A=2[0123]=[0246]
根据定义,矩阵数乘满足结合律和分配率,
α ( β A ) = ( α β ) A ( α + β ) A = α A + β A α ( A + B ) = α A + α B \mathbf{\alpha (\beta A)} = \mathbf{(\alpha \beta) A} \\ \mathbf{(\alpha + \beta)A} = \mathbf{\alpha A + \beta A} \\ \mathbf{\alpha (A+B)} = \mathbf{\alpha A + \alpha B} α(βA)=(αβ)A(α+β)A=αA+βAα(A+B)=αA+αB

矩阵减法

定义 矩阵减法 矩阵 A A A 减去矩阵 B B B 等于矩阵 A A A 加上矩阵 B B B − 1 -1 1 数乘。

如同向量减法,矩阵减法可以看作矩阵加法。故本书除特别指明者外,一般只讨论矩阵加法。

矩阵乘以向量

分配率

矩阵 A A A 乘以向量 v + w \mathbf{v}+\mathbf{w} v+w
A ( v + w ) = ( v 1 + w 1 ) a 1 + ( v 2 + w 2 ) a 2 + ⋯ + ( v n + w n ) a n = ( v 1 a 1 + v 2 a 2 + ⋯ + v n a n ) + ( w 1 a 1 + w 2 a 2 + ⋯ + w n a n ) = A v + A w A(\mathbf{v}+\mathbf{w}) = (v_1+w_1)\mathbf{a_1}+(v_2+w_2)\mathbf{a_2}+\cdots+(v_n+w_n)\mathbf{a_n} \\ = (v_1\mathbf{a_1}+v_2\mathbf{a_2}+\cdots+v_n\mathbf{a_n}) + (w_1\mathbf{a_1}+w_2\mathbf{a_2}+\cdots+w_n\mathbf{a_n}) \\ = A\mathbf{v} + A\mathbf{w} A(v+w)=(v1+w1)a1+(v2+w2)a2++(vn+wn)an=(v1a1+v2a2++vnan)+(w1a1+w2a2++wnan)=Av+Aw
矩阵 A + B A+B A+B 乘以向量 v \mathbf{v} v
( A + B ) v = v 1 ( a 1 + b 1 ) + v 2 ( a 2 + b 2 ) + ⋯ + v n ( a n + b n ) = ( v 1 a 1 + v 2 a 2 + ⋯ + v n a n ) + ( v 1 b 1 + v 2 b 2 + ⋯ + v n b n ) = A v + B v (A+B)\mathbf{v} = v_1(\mathbf{a_1}+\mathbf{b_1})+v_2(\mathbf{a_2}+\mathbf{b_2})+\cdots+v_n(\mathbf{a_n}+\mathbf{b_n}) \\ = (v_1\mathbf{a_1}+v_2\mathbf{a_2}+\cdots+v_n\mathbf{a_n}) + (v_1\mathbf{b_1}+v_2\mathbf{b_2}+\cdots+v_n\mathbf{b_n} ) \\ = A\mathbf{v} + B\mathbf{v} (A+B)v=v1(a1+b1)+v2(a2+b2)++vn(an+bn)=(v1a1+v2a2++vnan)+(v1b1+v2b2++vnbn)=Av+Bv
重要性质 分配率 A ( v + w ) = A v + A w A(\mathbf{v}+\mathbf{w}) = A\mathbf{v} + A\mathbf{w} A(v+w)=Av+Aw ( A + B ) v = A v + B v (A+B)\mathbf{v} = A\mathbf{v} + B\mathbf{v} (A+B)v=Av+Bv

重要性质 数乘和分配率 A ( α v + β w ) = α A v + β A w A(\alpha\mathbf{v}+\beta\mathbf{w}) = \alpha A\mathbf{v} + \beta A\mathbf{w} A(αv+βw)=αAv+βAw

注意向量乘以矩阵是没有意义的。

矩阵这些运算都很平凡,运算规则类似实数运算规则。矩阵神奇之处在于矩阵乘法,为了引入矩阵乘法,需要换个角度看矩阵乘以向量。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值