3.5 矩阵 $4$ 个空间和方程 $A\mathbf{x}=\mathbf{y}$ 的关系

矩阵 4 4 4 个空间和方程 A x = y A\mathbf{x}=\mathbf{y} Ax=y 的关系

已经介绍了矩阵 A A A 3 3 3 个空间,列空间 { A v } \{A\mathbf{v}\} {Av} :矩阵列向量组张成的空间;行空间 { A T u } \{A^T\mathbf{u} \} {ATu}:矩阵行向量组张成的空间;零空间 { x : A x = 0 } \{\mathbf{x}:A\mathbf{x}=\mathbf{0}\} {x:Ax=0} :行空间的正交补空间。那必然存在列空间的正交补空间,称为左零空间 { x : A T x = 0 } \{\mathbf{x}:A^T\mathbf{x}=\mathbf{0}\} {x:ATx=0}

因为 A T x = [ a 1 T x a 2 T x ⋮ a n T x ] = 0 A^T\mathbf{x}=\left[ \begin{matrix} \mathbf{a^T_{1}}\mathbf{x} \\ \mathbf{a^T_{2}}\mathbf{x} \\ \vdots \\ \mathbf{a^T_{n}}\mathbf{x} \end{matrix} \right] = \mathbf{0} ATx=a1Txa2TxanTx=0 ,该式的几何图像是:向量 x \mathbf{x} x 与矩阵 A A A 列向量组垂直,即向量 x \mathbf{x} x 垂直矩阵 A m n A_{mn} Amn 列空间,第一章介绍了空间正交分解和空间的正交补空间,矩阵左零空间就是矩阵列空间的正交补空间!

定义 矩阵 A m n A_{mn} Amn 左零空间 矩阵列空间的正交补空间 { x : A T x = 0 } \{ \mathbf{x}:A^T\mathbf{x}=\mathbf{0} \} {x:ATx=0} ,是 m m m 维子空间,左零空间维度为 m − r m-r mr ,与列空间垂直。记为 L n u l l A = { x : A T x = 0 } Lnull A = \{\mathbf{x}:A^T\mathbf{x}=\mathbf{0}\} LnullA={x:ATx=0}

方程 A x = y A\mathbf{x}=\mathbf{y} Ax=y 值域为 m m m 维子空间。矩阵 4 4 4 个空间中,列空间和左零空间是 m m m 维子空间,且是空间的正交分解,列空间是方程值域(值空间),左零空间是列空间的正交补空间,即 n n n 维空间中不存在向量 x \mathbf{x} x 能使 A x A\mathbf{x} Ax 是左零空间的非零向量。

方程 A x = y A\mathbf{x}=\mathbf{y} Ax=y 定义域为 n n n 维子空间。矩阵 4 4 4 个空间中,行空间和零空间是 n n n 维子空间,且是空间的正交分解。零空间是方程 A x = 0 A\mathbf{x}=\mathbf{0} Ax=0 解空间,则不位于零空间的任意非零向量 x \mathbf{x} x ,向量 A x A\mathbf{x} Ax 必不等于零向量,因为行空间是零空间的正交补空间,所以行空间是方程的非零解空间。非零解空间是方程 A x = y , y ≠ 0 A\mathbf{x}=\mathbf{y},\mathbf{y}\ne\mathbf{0} Ax=y,y=0 的解空间。

重要性质 行空间是方程的非零解空间,列空间是方程的值空间,它们维度均为 r a n k A rank A rankA ,这两个空间内函数 A x = y A\mathbf{x}=\mathbf{y} Ax=y 是一一映射!

证:该映射显然是满射,因为列空间定义为 { A v } \{A\mathbf{v}\} {Av} ,则列空间中任意向量都对应行空间中向量 v \mathbf{v} v

假设不是单射,则令两个位于非零解空间的不同向量 x 1 , x 2 \mathbf{x_1},\mathbf{x_2} x1,x2 ,它们映射到同一向量 y \mathbf{y} y ,即 A x 1 = y A\mathbf{x_1}=\mathbf{y} Ax1=y A x 2 = y A\mathbf{x_2}=\mathbf{y} Ax2=y ,则 A ( x 1 − x 2 ) = y − y = 0 A\mathbf{(x_1-x_2)}=\mathbf{y}-\mathbf{y}=\mathbf{0} A(x1x2)=yy=0 ,即向量 ( x 1 − x 2 ) \mathbf{(x_1-x_2)} (x1x2) 位于零空间。又根据假设, x 1 , x 2 \mathbf{x_1},\mathbf{x_2} x1,x2 位于非零解空间,则它们的线性组合也位于非零空间,即向量 ( x 1 − x 2 ) \mathbf{(x_1-x_2)} (x1x2) 位于非零解空间。向量 ( x 1 − x 2 ) \mathbf{(x_1-x_2)} (x1x2) 同时位于非零解空间和零解空间,这两个空间又是正交互补的,只有这个向量是零向量,所以 x 1 − x 2 = 0 \mathbf{x_1} - \mathbf{x_2} = \mathbf{0} x1x2=0 ,与假设矛盾,故映射是单射。

行空间和列空间内函数 A x = y A\mathbf{x}=\mathbf{y} Ax=y 是一一映射,则存在唯一逆映射,逆映射对应矩阵即是矩阵 A A A 的伪逆。根据该性质计算伪逆是线性代数最波澜壮阔的图像,本书后面章节会详细介绍。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值