参考
http://www.pianshen.com/article/2960258309/
https://blog.csdn.net/zhangqixiang5449/article/details/50976260
代码传送门 https://blog.csdn.net/jiDxiaohuo/article/details/100895947
图像处理空间域处理主要分两种方法(灰度变换和空间滤波)
- 灰度变换:对图像的单个像素进行操作,主要以对比度和阈值处理为主。
- 空间滤波:通过图像中每个像素的邻域像素处理来锐化或者模糊图像。
一些基本的灰度变换函数
灰度变换可以理解为下式
S = T( r )
通过特定函数对每个像素进行操作。
以下默认图像灰度级范围为[L-1,0]
图像反转
公式:s = L - 1 - r
对数变换
公式:s = c log( 1+r )
对数变换可以压缩一部分像素,同时拓展另一部分像素

下图C = 1、10、20

幂律变换(伽马变换)
公式: s = c*rb
r、b 均为正常数。
习惯上,幂律方程中的指数称为伽马。用于矫正这些幂律响应现象的处理称为伽马校正


分段线性变换函数
对比度拉伸
分段对比度拉伸可以指定部分区域进行对比度拉伸,也可以实现对不同区域采取不同的拉伸手段。


灰度级分层

可以或是分段对比度拉伸的简易版 极端情况也就变成了二值化。
比特平面分层
像素是由比特组成的数字。例如256级灰度图像中 每个像素就是由8比特组成的。一幅8比特图像可以分成8张1比特(也就是二值化的图片)。


直方图处理
直方图均衡、直方图匹配(规定化)
https://blog.csdn.net/jiDxiaohuo/article/details/100776984

7942

被折叠的 条评论
为什么被折叠?



