图像处理基础——灰度级形态学

本文介绍了图像处理中的灰度级形态学,包括膨胀、腐蚀等基本操作,以及开运算、闭运算的应用。探讨了不平坦结构元和平坦结构元的概念,并阐述了灰度级形态学在平滑、梯度、顶帽和底帽变换等方面的基本算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

形态学只适用于Region操作 或者是二值化后的图片
需要延伸到灰度形态学才能广泛应用
拓展到灰度级形态学后 结构元的表达形式可以大致分为以下两类 不平坦结构元 平坦结构元

  • 不平坦结构元:结构元内灰度级根据位置不同而变换 灰度剖面不平坦
  • 平坦结构元:平坦结构元处处灰度级相同 灰度剖面平坦

在这里插入图片描述

膨胀 腐蚀

腐蚀

当平坦结构元B原点在(x,y)处时,用一个平坦结构元对图像f进行腐蚀定义为f与b重合区域的最小值 (非线性操作,不可逆)

在这里插入图片描述
注:如果使用的是不平坦结构元 则公式应变为下式,从公式可以看出来当不平坦结构元值过大就会导致F影响很小,同理 非平坦结构元膨胀也一样 导致最终得出的图片很难解释,所以很少使用非平坦结构元
在这里插入图片描述

膨胀

当平坦结构元B原点在(x,y)处时,

### 数字图像处理灰度级形态学操作实现方法 #### 腐蚀与膨胀操作 对于灰度图像而言,腐蚀和膨胀是最基本的两种形态学操作。腐蚀可以定义为通过结构元素遍历整个输入图像,在每一个位置计算该结构元素覆盖下的最小像素值作为输出图像对应位置上的新像素值[^1]。 ```python import cv2 import numpy as np def grayscale_erosion(image, kernel): """ 对给定的灰度图执行腐蚀操作 参数: image (numpy.ndarray): 输入的灰度图像. kernel (numpy.ndarray): 结构化元素(内核). 返回: eroded_image (numpy.ndarray): 经过腐蚀后的灰度图像. """ eroded_image = cv2.erode(image, kernel) return eroded_image ``` 相反地,膨胀则是取最大值来代替原点处的像素强度。这有助于填补对象内部的小孔洞或将断开的对象连接起来。 ```python def grayscale_dilation(image, kernel): """ 对给定的灰度图执行膨胀操作 参数: image (numpy.ndarray): 输入的灰度图像. kernel (numpy.ndarray): 结构化元素(内核). 返回: dilated_image (numpy.ndarray): 经过膨胀后的灰度图像. """ dilated_image = cv2.dilate(image, kernel) return dilated_image ``` #### 开闭操作 基于上述基础操作,还可以构建更为复杂的形态学变换——开操作(先腐蚀再膨胀)用于去除细小物体和平滑较大物体边缘;而闭操作(先膨胀后腐蚀),则倾向于封闭狭窄缝隙并保持形状不变形。 ```python def opening_operation(image, kernel): """ 执行开操作:先腐蚀再膨胀 参数: image (numpy.ndarray): 输入的灰度图像. kernel (numpy.ndarray): 结构化元素(内核). 返回: opened_image (numpy.ndarray): 进行了开操作之后的结果图片. """ erosion_result = grayscale_erosion(image=image, kernel=kernel) opened_image = grayscale_dilation(image=erosion_result, kernel=kernel) return opened_image def closing_operation(image, kernel): """ 执行闭操作:先膨胀再腐蚀 参数: image (numpy.ndarray): 输入的灰度图像. kernel (numpy.ndarray): 结构化元素(内核). 返回: closed_image (numpy.ndarray): 进行了闭操作之后的结果图片. """ dilation_result = grayscale_dilation(image=image, kernel=kernel) closed_image = grayscale_erosion(image=dilation_result, kernel=kernel) return closed_image ``` #### 应用实例 当应用于实际场景时,比如医学影像分析领域内的肺部CT扫描数据预处理阶段,可以通过形态学手段有效消除噪声干扰项或是修复因成像过程引入的人工缺陷等问题[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vector_LW

我们终将成龙 加油

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值