7-10 排座位(并查集)

///起初觉得挺难的,分析了一下,理解题意后5分钟就能把代码写出来

///再来补一下,偶然看到别人用并查集做的,运行效率极高,可以对比一下并查集的做法以及不用并查集的做法

7-10 排座位(25 分)

布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位。无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席。

输入格式:

输入第一行给出3个正整数:N100),即前来参宴的宾客总人数,则这些人从1到N编号;M为已知两两宾客之间的关系数;K为查询的条数。随后M行,每行给出一对宾客之间的关系,格式为:宾客1 宾客2 关系,其中关系为1表示是朋友,-1表示是死对头。注意两个人不可能既是朋友又是敌人。最后K行,每行给出一对需要查询的宾客编号。

这里假设朋友的朋友也是朋友。但敌人的敌人并不一定就是朋友,朋友的敌人也不一定是敌人。只有单纯直接的敌对关系才是绝对不能同席的。

输出格式:

对每个查询输出一行结果:如果两位宾客之间是朋友,且没有敌对关系,则输出No problem;如果他们之间并不是朋友,但也不敌对,则输出OK;如果他们之间有敌对,然而也有共同的朋友,则输出OK but...;如果他们之间只有敌对关系,则输出No way

输入样例:

7 8 4
5 6 1
2 7 -1
1 3 1
3 4 1
6 7 -1
1 2 1
1 4 1
2 3 -1
3 4
5 7
2 3
7 2

输出样例:

No problem
OK
OK but...
No way


分析:

二维数组t[][] 存储两人的关系  ;如a,b为朋友---》t[a][b]==t[b][a]==1   敌人----》t[a][b]==t[b][a]==-1;

有四种输出,每一种输出对应一种情况; a,b 两个人

No problem--------》 a,b为朋友-----》t[a][b]==t[b][a]==1

OK-----------------》a,b没有任何关系--------》 t[a][b]==t[b][a]==0

No way--------------》a,b是敌人也没有共同朋友-------------》 t[a][b]==-1; 

//只需搜寻有没有共同朋友即可---》即t[a][i]==t[b][i]==1 有共同朋友i

OK but--------------》a,b是敌人但有共同的朋友-------》t[a][b]=-1;

代码:

#include <iostream>
#include <vector>
using namespace std;
int a[101][101];
int n,m,k;
//已知c,d是敌人,找共同朋友;有返回1,否则返回0; 
int find(int c,int d){
  for(int i=1;i<=n;i++) {
    if(a[c][i]&&a[d][i]) return 1;//找到共同朋友返回1 
  }
  return 0;//没找到共同朋友 返回0 
}
int main(){ 
    vector<string>s;
  cin>>n>>m>>k;
  //memset(a,0,sizeof(a));
  int x,y,z;
  //输入关系 
  for(int i=0;i<m;i++){
    cin>>x>>y>>z;
    a[x][y]=z;
    a[y][x]=z;
  }
  //查询关系 
  for(int i=0;i<k;i++){
    cin>>x>>y;
    if(a[x][y]==1) s.push_back("No problem");
    else if(a[x][y]==0) s.push_back("OK");
    else if(a[x][y]==-1&&find(x,y))//是敌人但有共同朋友 
    {s.push_back("OK but...");} 
    else //是敌人并且没有共同朋友 
    {s.push_back("No way");} 
  }  
  //输出
  for(int i=0;i<k;i++) 
     cout<<s[i]<<endl;
  return 0;
} 

并查集做法:

#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <map>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
int f[105];
int en[105][105]= {0};
int _find(int x)
{
    if(f[x]!=x)
        return f[x]=_find(f[x]);
    return f[x];
}
int main()
{
    int n,m,k;
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1; i<=n; i++)
        f[i]=i;
    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        if(c==1)
        {
            int fa=_find(a);
            int fb=_find(b);
            if(fa!=fb) f[fa]=fb;
        }
        else en[a][b]=en[b][a]=1;
    }
    while(k--)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        int fa=_find(a);
        int fb=_find(b);
        if(fa==fb&&!en[a][b])
            puts("No problem");
        else if(fa!=fb&&!en[a][b])
            puts("OK");
        else if(fa==fb&&en[a][b])
            puts("OK but...");
        else puts("No way");
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hello689

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值