单目3D目标检测之入门

单目3D目标检测入门

一、单目3D目标检测:

1. 3D目标检测领域有哪些任务和方法?

为了更直观,我画了一个思维导图,点击链接后,注意需要切换一下思维导图状态。
在这里插入图片描述

在3D目标检测领域,根据输入信息的不同,大致可分为三类方法。

  1. Point Cloud-based Methods (基于点云来做)
  2. Multimodal Fusion-based Methods(点云和图像的融合)
  3. Monocular/Stereo Image-based Methods(单目/立体图像的方法)

  首先,基于点云的经典方法,比如VoxelNet(2018年)、PointPillars(2019年)、PointRCNN(2019年)等,这类方法都是直接在点云数据上进行特征的提取和RPN操作,将2D目标检测中的网络结构和思想迁移到3D点云中。

  点云和图像的融合方法是当前3D目标检测的主流。比较经典的算法有,2018年的MV3D、Frustum PointNets、2019年的Pseudo-LiDAR、2020年的PointPainting等算法。这里的Pseudo-LiDAR(也叫为激光雷达)这篇文章对后来的单目3D目标检测领域的发展起到了促进的作用。这里使用了双目图像来生成深度图,根据深度图得到点云数据,再进行目标检测任务。

  Stereo Image-based方法中,主要是基于双目图像的3D目标检测,这一领域我不太了解,以后再做补充。单目3D目标检测我是2021年刚接触的,比较出色的单目3D检测方法主要有:Mono3D PLiDAR、AutoShape、MonoRCNN、CaDDN等。而在单目3D目标检测领域,又可细分为三类方法。关于单目3D目标检测的分类翻译自CaDNN这篇文章

  • 直接法(Direct Methods)
      所谓直接法就是直接从图像中估计出3D检测框,也无需预测中间的3D场景表示[9,52,4,32]。更进一步的说就是,直接法可以结合2D图像平面和3D空间的几何关系来辅助检测[53,12,40,3]。例如,可以在图像平面上估计出某对象的关键点,以帮助使用已知几何结构构建3D box[33,29]。[M3D-RPN][M3D-RPN: monocular 3D region proposal network for object detection. ICCV, 2019.][3]引入深度感知卷积,它按行划分输入并学习每个区域的no-shared kernels,以学习3D空间中位于相关区域的特定特征。
    可以对场景中的物体进行形状估计,从而理解三维物体的几何形状。形状估计可以从3D CAD模型的标记顶点中被监督[5,24],或从LiDAR扫描[22],或直接从输入数据以自我监督的方式[2]。

### mmdet3d与OpenPCDet的对比分析 #### 差异分析 mmdet3d 和 OpenPCDet 是两种主流的三维目标检测框架,它们分别基于不同的设计哲学和技术栈实现。以下是两者的主要差异: 1. **基础架构** - mmdet3d 是由 MMDetection 扩展而来的一个通用三维目标检测库,继承了 MMCV 的模块化设计理念[^4]。它支持多种传感器数据(如 LiDAR、摄像头)以及多模态融合的任务。 - OpenPCDet 则专注于点云处理,主要针对自动驾驶场景下的三维目标检测任务,其核心功能围绕着 LiDAR 数据展开[^5]。 2. **灵活性与扩展性** - mmdet3d 提供了一个高度统一的接口,能够轻松切换不同类型的模型和任务(例如单目图像到立体视觉再到点云检测)。这种特性使其非常适合学术研究者快速验证新想法[^6]。 - 而 OpenPCDet 更加注重性能优化,在具体应用场景下提供了更高效率的推理流程;不过相对而言它的定制自由度较低一些[^7]。 3. **社区活跃程度和支持资源** - 作为阿里巴巴达摩院开源项目的一部分,mmdet3d 得到了持续更新维护,并拥有丰富的文档教程帮助初学者入门[^8]。 - 对于 OpenPCDet 来说,虽然也有一定规模的支持群体但由于专注领域较窄所以整体生态不如前者庞大[^9]。 4. **算法覆盖范围** - 在算法层面,mmdet3d 不仅包含了经典的 VoxelNet/PointPillars 等方法还不断引入最新的研究成果比如 CenterPoint 系列版本;同时兼容两阶段pipeline(Region Proposal Networks)[^10]. - 类似地,OpenPCDet 实现了许多先进的 point-based 或 voxel-based 方法但通常更偏向某些特定方向上的深入探索而非广泛尝试各种可能性[^11]. #### 使用方法概述 对于希望利用上述任一工具开展工作的开发者来说,下面简要介绍了如何着手准备环境配置及运行基本实例: ##### 安装依赖项 无论是选择哪一个平台都需要先安装必要的软件包: ```bash pip install mmcv-full==latest_version # For mmdet3d conda env create -f environment.yml # For OpenPCDet (assuming you have downloaded repo) ``` ##### 配置文件调整 - 用户可以根据需求修改预定义好的`.py`格式配置脚本以适配个人实验条件或者硬件规格. - 特别注意路径指向正确与否会影响后续训练过程能否顺利加载自定义数据集. ##### 开始训练&评估 启动命令大致如下所示: ```bash python tools/train.py configs/custom_model.py --gpu-id=your_device_id # In case of using mmdet3d python train.py cfgs/dataset_name/models/sample_config.yaml # When working within OpenPCDet framework ``` 最后提醒一点就是记得保存好每次迭代产生的checkpoint方便以后恢复继续学习或是部署上线前测试效果! ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hello689

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值