卢卡斯Lucas定理

博客介绍了卢卡斯定理及其在计算组合数模p时的应用,通过生成函数和多项式展开证明了定理。同时,展示了如何利用费马小定理预处理阶乘和求逆元。在给定的C++代码示例中,演示了如何使用卢卡斯定理解决实际问题,例如在P3807题目中的计算。
摘要由CSDN通过智能技术生成

卢卡斯Lucas定理

L U C A S \mathscr{LUCAS} LUCAS

内容

( n m ) ≡ ( ⌊ n p ⌋ ⌊ m p ⌋ ) ⋅ ( n m o d    p m m o d    p ) m o d    p \binom{n}{m} \equiv \binom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{m}{p} \rfloor} \cdot \binom{n \mod p}{m \mod p} \mod p (mn)(pmpn)(mmodpnmodp)modp

其中 p p p为质数。

上式称为Lucas定理。

证明

生成函数 ( 1 + x ) n (1+x)^n (1+x)n x m x^{m} xm前的系数为 ( n m ) \binom{n}{m} (mn),因此

( 1 + x ) n ≡ ( 1 + x ) p ⌊ n p ⌋ ( 1 + x ) n m o d    p m o d    p (1+x)^n \equiv (1 + x)^{p \lfloor \frac{n}{p} \rfloor} (1 + x)^{n \mod p} \mod p (1+x)n(1+x)ppn(1+x)nmodpmodp

多项式 ( 1 + x ) p m o d    p (1 + x)^p \mod p (1+x)pmodp

( 1 + x ) p ≡ ∑ i = 0 p ( p i ) x i = 1 + x p m o d    p (1 + x)^p \equiv \sum_{i = 0}^{p}\binom{p}{i}x^i = 1 + x^p \mod p (1+x)pi=0p(ip)xi=1+xpmodp

此处考虑 p p p是质数,式子 ( p i ) \binom{p}{i} (ip),当且仅当 i = 0 i =0 i=0 i = p i=p i=p的时候模为 1 1 1

故:

( 1 + x p ) ⌊ n p ⌋ ( 1 + x ) n m o d    p m o d    p (1 + x^p)^{\lfloor \frac{n}{p} \rfloor} (1 + x)^{n \mod p} \mod p (1+xp)pn(1+x)nmodpmodp

那么卷积对 x m x^m xm项的贡献只有当前项取 p p p的倍数,后项取余数的时候才能取到,
因此:

( n m ) ≡ ( ⌊ n p ⌋ ⌊ m p ⌋ ) ⋅ ( n m o d    p m m o d    p ) m o d    p \binom{n}{m} \equiv \binom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{m}{p} \rfloor} \cdot \binom{n \mod p}{m \mod p} \mod p (mn)(pmpn)(mmodpnmodp)modp

证毕。

例题

P3807

预处理阶乘+费马小定理求逆元,Lucas定理的运用。

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

#define FR freopen("in.txt", "r", stdin)
#define FW freopen("out1.txt", "w", stdout)

#define MAXT 100010
#define INV(x) fpow(x, p - 2, p)

ll fac[MAXT];

ll fpow(ll a, ll e, ll p)
{
    ll ans = 1;
    a %= p;
    for (; e; e >>= 1, a = (a * a) % p)
    {
        if (e & 1)
            ans = (ans * a) % p;
    }
    return ans;
}

void prework(ll p)
{
    fac[0] = fac[1] = 1;
    for (ll i = 2; i <= p; i++)
    {
        fac[i] = (fac[i - 1] * i) % p;
    }
}

ll C(ll n, ll m, ll p)
{
    if (m > n)
        return 0;
    if (m == 0)
        return 1;
    return (((fac[n] * INV(fac[m])) % p) * INV(fac[n - m])) % p;
}

ll lucas(ll n, ll m, ll p)
{
    if (m == 0)
        return 1;
    return (lucas(n / p, m / p, p) * C(n % p, m % p, p)) % p;
}

int main()
{
    int t;
    scanf("%d", &t);
    while (t--)
    {
        ll n, m, p;
        scanf("%lld %lld %lld", &n, &m, &p);
        prework(p);
        printf("%lld\n", lucas(n + m, n, p));
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值