信号与系统复习笔记——拉普拉斯变换和Z变换

信号与系统复习笔记——拉普拉斯变换和Z变换

拉普拉斯变换

一个LTI系统对信号 e s t e^{st} est 的响应为:

y ( t ) = H ( s ) e s t y(t) = H(s) e^{st} y(t)=H(s)est

其中特征函数 H ( s ) H(s) H(s) 为:

H ( s ) = ∫ − ∞ + ∞ h ( t ) e − s t d t H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st} dt H(s)=+h(t)estdt

一个信号的拉普拉斯变换为:

X ( s ) = ∫ − ∞ + ∞ h ( t ) e − s t d t X(s) = \int_{-\infty}^{+\infty} h(t)e^{-st} dt X(s)=+h(t)estdt

s = j ω s = j\omega s= 的时候,拉普拉斯变换退化为傅里叶变换。

复数 s s s 可以表示为 s = σ + j ω s = \sigma + j\omega s=σ+ ,那么拉普拉斯变换可以表示为:

X ( σ + j ω ) = ∫ − ∞ + ∞ [ x ( t ) e − σ t ] e − j ω t d t X(\sigma + j\omega) = \int_{-\infty}^{+\infty} [x(t)e^{- \sigma t}] e^{- j\omega t} dt X(σ+)=+[x(t)eσt]etdt

这等于信号 x ( t ) e − σ t x(t)e^{- \sigma t} x(t)eσt 的傅里叶变换,我们称 e − σ t e^{- \sigma t} eσt 为拉普拉斯衰减因子。

注意到,一个信号的拉普拉斯变换并非对于所有的 s s s 都收敛,我们称能使拉普拉斯变换积分收敛的所有 s s s 的集合称为 收敛域 或是 ROC。

对于有理的拉普拉斯变换可以表示为:

X ( s ) = N ( s ) D ( s ) X(s) = \frac{N(s)}{D(s)} X(s)=D(s)N(s)

我们称 N ( s ) = 0 N(s) = 0 N(s)=0 的根称为 零点 D ( s ) = 0 D(s) = 0 D(s)=0 的根称为 极点 。在 s s s 平面内标注零点和极点称为零-极点图。

拉普拉斯变换的收敛域

两个不同的信号可能对应一个相同的拉普拉斯变换,但其收敛域却不相同。

性质一: X ( s ) X(s) X(s) 的收敛域在 s s s 平面内由平行于 j ω j\omega 轴的带状区域组成。

因为要满足 x ( t ) e − σ t x(t)e^{-\sigma t} x(t)eσt 绝对可积,因此只和 σ \sigma σ 有关。

性质二: X ( s ) X(s) X(s) 的收敛域内不包含极点。

性质三: 若 x ( t ) x(t) x(t) 是时间有限且有界的信号,那么收敛域就是整个 s s s 平面。

性质四: 若 x ( t ) x(t) x(t) 是右边信号,并且 ℜ s = ω 0 \Re{s} = \omega_0 s=ω0 这条线位于收敛域内,那么 ℜ s > ω 0 \Re{s} > \omega_0 s>ω0 的全部 s s s 值都在收敛域内。

进一步,若点 s 0 s_0 s0 在收敛域内,那么点 s 0 s_0 s0右半平面 收敛。

性质五: 若 x ( t ) x(t) x(t) 是左边信号,并且 ℜ s = ω 0 \Re{s} = \omega_0 s=ω0 这条线位于收敛域内,那么 ℜ s < ω 0 \Re{s} < \omega_0 s<ω0 的全部 s s s 值都在收敛域内。

进一步,若点 s 0 s_0 s0 在收敛域内,那么点 s 0 s_0 s0左半平面 收敛。

性质六: 若 x ( t ) x(t) x(t) 是双边信号,并且存在收敛域,那么收敛域一定是一条带状区域。

因为收敛域内不存在极点,推出下面两个推论:

性质七: 若 x ( t ) x(t) x(t) 的拉普拉斯变换是有理的,那么他的收敛域总是被极点所界定或延伸到无限远处。另外,在收敛域内不包含任何的极点。

性质八: 若 x ( t ) x(t) x(t) 的拉普拉斯变换是有理的,那么若 x ( t ) x(t) x(t) 是右边信号,其收敛域在 s s s 平面上位于最右边极点的右边,若 x ( t ) x(t) x(t) 是左边信号,其收敛域在 s s s 平面上位于最左边极点的左边。

拉普拉斯逆变换

通过傅里叶的逆变换我们可以得到:

x ( t ) e − σ t = 1 2 π ∫ − ∞ + ∞ X ( σ + j ω ) e j ω t d ω x(t)e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\sigma + j\omega) e^{j\omega t} d\omega x(t)eσt=2π1+X(σ+)etdω

得到:

x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( σ + j ω ) e ( σ + j ω ) t d ω x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\sigma + j\omega) e^{(\sigma+j\omega) t} d\omega x(t)=2π1+X(σ+)e(σ+)tdω

s = σ + j ω s = \sigma + j\omega s=σ+ ω = ( s − σ ) / j \omega = (s - \sigma) / j ω=(sσ)/j 那么 d ω = 1 j d s d\omega = \frac{1}{j} ds dω=j1ds 导出为:

x ( t ) = 1 2 π j ∫ σ − j ∞ σ + j ∞ X ( s ) e s t d s x(t) = \frac{1}{2 \pi j} \int_{\sigma -j\infty}^{\sigma + j\infty} X(s) e^{st} ds x(t)=2πj1σjσ+jX(s)estds

上式称为拉普拉斯逆变换,积分区域可以找在收敛域内的任意一条直线 ℜ s = σ \Re{s} = \sigma s=σ

利用零极点图对傅里叶变换进行几何求解

对于一个有理拉普拉斯的形式,可以表示为零点项和极点项的乘积所组成的:

X ( s ) = M ∏ i = 1 R ( s − β i ) ∏ j = 1 P ( s − α j ) X(s) = M \frac{\prod_{i=1}^R (s - \beta_i)}{\prod_{j=1}^P (s - \alpha_j)} X(s)=Mj=1P(sαj)i=1R(sβi)

为了求取 X ( s ) X(s) X(s) s = s 1 s=s_1 s=s1 处的值,上面每一项都可以表示为零点极点到点 s 1 s_1 s1 的向量表示,模长就是零点向量长度的乘积除以极点向量的乘积再乘以 M M M ,而辐角就是零点向量的辐角和减去极点向量的辐角,若 M M M 是负的则还要加一个附加辐角 π \pi π

特别的,傅里叶变换即在轴 σ = 0 \sigma=0 σ=0 处移动。

拉普拉斯变换的性质

性质信号拉普拉斯变换收敛域
线性 a x 1 ( t ) + b x 2 ( t ) ax_1(t) + bx_2(t) ax1(t)+bx2(t) x X 1 ( s ) + b X 2 ( s ) xX_1(s)+bX_2(s) xX1(s)+bX2(s)至少是 R 1 ∩ R 2 R_1 \cap R_2 R1R2
时移 x ( t − t 0 ) x(t - t_0) x(tt0) e − s t 0 X ( s ) e^{-st_0}X(s) est0X(s) R R R
s s s 域平移 e s 0 t x ( t ) e^{s_0t}x(t) es0tx(t) X ( s − s 0 ) X(s - s_0) X(ss0) R + ℜ s 0 R + \Re{s_0} R+s0
时域尺度变换 x ( a t ) x(a t) x(at) 1 ∣ a ∣ X ( s a ) \frac{1}{|a|}X(\frac{s}{a}) a1X(as) R a \frac{R}{a} aR
共轭 x ∗ ( t ) x^*(t) x(t) X ∗ ( s ∗ ) X^*(s^*) X(s) R R R
卷积 x 1 ( t ) ∗ x 2 ( t ) x_1(t) \ast x_2(t) x1(t)x2(t) X 1 ( s ) X 2 ( s ) X_1(s)X_2(s) X1(s)X2(s)至少是 R 1 ∩ R 2 R_1 \cap R_2 R1R2
时域微分 d x ( t ) d t \frac{dx(t)}{dt} dtdx(t) s X ( s ) sX(s) sX(s)至少是 R R R
s s s 域微分 − t x ( t ) -tx(t) tx(t) d X ( s ) s \frac{dX(s)}{s} sdX(s) R R R
时域积分 ∫ − ∞ t x ( τ ) d τ \int_{-\infty}^t x(\tau) d\tau tx(τ)dτ 1 s X ( s ) \frac{1}{s}X(s) s1X(s)至少是 R ∩ { ℜ s > 0 } R \cap \{\Re{s} > 0\} R{s>0}

初值和终值定理:

t < 0 , x ( t ) = 0 t < 0,x(t) = 0 t<0,x(t)=0 且在 x ( 0 ) x(0) x(0) 处不包含任何的冲激和高阶的奇异函数,则:

x ( 0 + ) = lim ⁡ s → ∞ s X ( s ) x(0^+) = \lim_{s \to \infty} sX(s) x(0+)=slimsX(s)

lim ⁡ t → ∞ x ( t ) = lim ⁡ s → 0 s X ( s ) \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s) tlimx(t)=s0limsX(s)

常用拉普拉斯变换对

信号变换收敛域
δ ( t ) \delta(t) δ(t) 1 1 1全部 s s s
u ( t ) u(t) u(t) 1 s \frac{1}{s} s1 ℜ s > 0 \Re{s} > 0 s>0
− u ( − t ) -u(-t) u(t) 1 s \frac{1}{s} s1 ℜ s < 0 \Re{s} < 0 s<0
t n − 1 ( n − 1 ) ! u ( t ) \frac{t^{n-1}}{(n-1)!}u(t) (n1)!tn1u(t) 1 s n \frac{1}{s^n} sn1 ℜ s > 0 \Re{s} > 0 s>0
− t n − 1 ( n − 1 ) ! u ( − t ) -\frac{t^{n-1}}{(n-1)!}u(-t) (n1)!tn1u(t) 1 s n \frac{1}{s^n} sn1 ℜ s < 0 \Re{s} < 0 s<0
e − a t u ( t ) e^{-at}u(t) eatu(t) 1 s + a \frac{1}{s+a} s+a1 ℜ s > − a \Re{s}>-a s>a
− e − a t u ( − t ) -e^{-at}u(-t) eatu(t) 1 s + a \frac{1}{s+a} s+a1 ℜ s < − a \Re{s}<-a s<a
t n − 1 ( n − 1 ) ! e − a t u ( t ) \frac{t^{n-1}}{(n-1)!}e^{-at}u(t) (n1)!tn1eatu(t) 1 ( s + a ) n \frac{1}{(s+a)^n} (s+a)n1 ℜ s > − a \Re{s}>-a s>a
− t n − 1 ( n − 1 ) ! e − a t u ( − t ) -\frac{t^{n-1}}{(n-1)!}e^{-at}u(-t) (n1)!tn1eatu(t) 1 ( s + a ) n \frac{1}{(s+a)^n} (s+a)n1 ℜ s < − a \Re{s}<-a s<a
δ ( t − T ) \delta(t - T) δ(tT) e − s T e^{-sT} esT全部 s s s
[ cos ⁡ ω 0 t ] u ( t ) [\cos{\omega_0 t}]u(t) [cosω0t]u(t) s s 2 + ω 0 2 \frac{s}{s^2 + \omega_0^2} s2+ω02s ℜ s > 0 \Re{s} > 0 s>0
[ sin ⁡ ω 0 t ] u ( t ) [\sin{\omega_0 t}]u(t) [sinω0t]u(t) ω 0 s 2 + ω 0 2 \frac{\omega_0}{s^2 + \omega_0^2} s2+ω02ω0 ℜ s > 0 \Re{s} > 0 s>0
[ e − a t cos ⁡ ω 0 t ] u ( t ) [e^{-at}\cos{\omega_0 t}]u(t) [eatcosω0t]u(t) s + a ( s + a ) 2 + ω 0 2 \frac{s + a}{(s+a)^2 + \omega_0^2} (s+a)2+ω02s+a ℜ s > − a \Re{s} > -a s>a
[ e − a t sin ⁡ ω 0 t ] u ( t ) [e^{-at}\sin{\omega_0 t}]u(t) [eatsinω0t]u(t) ω 0 ( s + a ) 2 + ω 0 2 \frac{\omega_0}{(s+a)^2 + \omega_0^2} (s+a)2+ω02ω0 ℜ s > − a \Re{s} > -a s>a
u n ( t ) = d n δ ( t ) d t n u_n(t) = \frac{d^n \delta(t)}{dt^n} un(t)=dtndnδ(t) s n s^n sn全部 s s s
u − n ( t ) = u ( t ) ∗ u ( t ) ∗ … n u_{-n}(t) = u(t) \ast u(t) \ast \ldots_n un(t)=u(t)u(t)n 1 s n \frac{1}{s^n} sn1 ℜ s > 0 \Re{s} > 0 s>0

拉普拉斯变换分析线性时不变系统

一个LTI系统和拉普拉斯变换的关系直接来自于卷积的性质:

Y ( s ) = H ( s ) X ( s ) Y(s) = H(s)X(s) Y(s)=H(s)X(s)

其中 H ( s ) H(s) H(s) 称为系统函数、传递函数。

  1. 因果性

一个因果的LTI的单位冲激响应一定是一个右边信号,那么 H ( s ) H(s) H(s) 的收敛域一定是一个右半平面。反之不一定成立。

对于一个有理的系统函数来说,系统的因果性就等效于收敛域位于最右边极点的右边的右半平面。

  1. 稳定性

对于一个稳定的LTI系统,他的单位冲激响应是绝对可积的,也就等价于存在傅里叶变换,那么当且仅当系统函数 H ( s ) H(s) H(s) 的收敛域包括 j ω j\omega 轴的时候,即 ℜ s = 0 \Re{s} = 0 s=0 ,一个LTI系统是稳定的。

特别的,对于因果的LTI系统,其收敛域是右半平面,也就是当且仅当 H ( s ) H(s) H(s) 的全部极点都位于 s s s 平面的左半平面的时候,即全部的极点都有负实部的时候,一个因果的LTI系统是稳定的。

Z 变换

对于离散信号,其单位脉冲响应对于离散的线性时不变系统对复指数 z n z^n zn 的响应为:

y [ n ] = H ( z ) z n y[n] = H(z) z^n y[n]=H(z)zn

其中:

H ( z ) = ∑ n = − ∞ + ∞ h [ n ] z − n H(z) = \sum_{n = -\infty}^{+\infty} h[n]z^{-n} H(z)=n=+h[n]zn

z = e j ω z = e^{j\omega} z=e 则为离散傅里叶变换。

一个离散信号的z变换定义为:

X ( z ) = ∑ n = − ∞ + ∞ x [ n ] z − n X(z) = \sum_{n = -\infty}^{+\infty} x[n]z^{-n} X(z)=n=+x[n]zn

一般的我们通过指数形式表示复指数底数 z = r e j ω z = re^{j\omega} z=re ,那么就可以写成:

X ( r e j ω ) = ∑ n = − ∞ + ∞ [ x [ n ] r − n ] e − j ω n X(re^{j\omega}) = \sum_{n = -\infty}^{+\infty} [x[n]r^{-n}]e^{-j\omega n} X(re)=n=+[x[n]rn]ejωn

也就是一个离散信号的z变换等于其 x [ n ] r − n x[n]r^{-n} x[n]rn 的离散傅里叶变换。

注意到:

X ( e j ω ) = X ( z ) ∣ z = e j ω X(e^{j\omega}) = X(z)|_{z = e^{j \omega}} X(e)=X(z)z=e

那么傅里叶变换就称为在复数 z z z 平面中,半径为 1 1 1 的单位圆上。

同样的,类似与拉普拉斯变换,z变换也存在其收敛域ROC。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
连续系统的时域分析是信号与系统学习中的重要部分。时域分析研究的是信号在时间域内的变化规律,常用的分析方法包括冲激响应法、单位阶跃响应法和相应方程法。 1. 冲激响应法 冲激响应法是一种基于系统输入信号的冲激函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个冲激序列的加权和,然后计算出系统对每个冲激的响应,得到系统的冲激响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为冲激序列的加权和,从而得到系统对任何输入信号的响应。 2. 单位阶跃响应法 单位阶跃响应法是一种基于系统输入信号的单位阶跃函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个单位阶跃函数的加权和,然后计算出系统对每个单位阶跃函数的响应,得到系统的单位阶跃响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为单位阶跃函数的加权和,从而得到系统对任何输入信号的响应。 3. 相应方程法 相应方程法是一种基于系统微分方程的解析解来分析系统时域特性的方法。具体来说,根据系统微分方程的特性,可以得到系统的传递函数,然后通过拉普拉斯变换将输入信号和传递函数变换到频域内,最终通过反变换得到系统的时域响应。 以上三种方法都是分析连续系统时域特性的重要方法,各自适用于不同的情况。掌握这些方法可以帮助我们更好地理解和分析连续系统的时域特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值