zoj 1074 前缀和+dp

To the Max

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Example

Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2

Output

15

这里写图片描述

与最大子序列和思想类似

#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<cmath>
#include<map>
#include<functional>
#include<queue>
#include<vector>
#include<algorithm>
typedef long long ll ;
const ll mod=100000+7;
using namespace std;

int main()
{
    int n;
    int num[222][222]={0};
    while(~scanf("%d",&n))
    {
        int i,j;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                num[i][j]=0;
                int t;
                scanf("%d",&t);
                num[i][j]=num[i-1][j]+t;
            }
        }
        int sum=0,ans=-999999;
        for(i=1;i<=n;i++)
        {
            for(j=i;j<=n;j++)
            {
                sum=0;
                for(int k=1;k<=n;k++)
                {
                    sum+=num[j][k]-num[i-1][k];
                    sum=max(sum,0);
                    ans=max(ans,sum);
                }

            }
        }
        cout<<ans<<endl;
    }
   return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值