To the Max
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Example
Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Output
15
与最大子序列和思想类似
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<cmath>
#include<map>
#include<functional>
#include<queue>
#include<vector>
#include<algorithm>
typedef long long ll ;
const ll mod=100000+7;
using namespace std;
int main()
{
int n;
int num[222][222]={0};
while(~scanf("%d",&n))
{
int i,j;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
num[i][j]=0;
int t;
scanf("%d",&t);
num[i][j]=num[i-1][j]+t;
}
}
int sum=0,ans=-999999;
for(i=1;i<=n;i++)
{
for(j=i;j<=n;j++)
{
sum=0;
for(int k=1;k<=n;k++)
{
sum+=num[j][k]-num[i-1][k];
sum=max(sum,0);
ans=max(ans,sum);
}
}
}
cout<<ans<<endl;
}
return 0;
}