问题
【问题描述】
e(自然对数)值计算公式为 1 + 1/1! + 1/2! + … + 1/n! ;输入一个整数n(0<=n<=30),计算相应e近似值 。
【输入形式】
从控制台输入整数n(0<=n<=30)。
【输出形式】
控制台输出计算结果,要求小数点后保留10位。
【样例输入1】
12
【样例输出1】
2.7182818283
【样例输入2】
13
【样例输出2】
2.7182818284
算法分析
思路一
输入:一个整数(整型);
处理:计算 公式1 + 1/1! + 1/2! + … + 1/n! ;
输出:以%.10f格式输出(小数后保留10位)
变量:
一个整型变量,用于存储所读入的整数, 如, int n;
一个双精度浮点变量, 用于存储计算结果, 如double e;
思路二
观察计算 公式1 + 1/1! + 1/2! + … + 1/n!,可知:
若前一次迭代1/(n-1)!计算结果为fn-1,则本次迭代的结果则为fn = fn-1 /n
因此,没有必要每次迭代都重新计算n!,显然效率会更高。
算法实现
思路一
#include <stdio.h>
double fact(int n)
{
int i;
double f=1.0;
for(i=1; i<=n; i++)
f *= i;
return f;
}
int main()
{
int n,i;
double e = 0.0;
scanf("%d", &n);
for(i=0; i<=n; i++)
e += 1.0/fact(i);
printf("%.10f", e);
return 0;
}
思路二
#include <stdio.h>
int main()
{
int n,i;
double e ,f
e = f = 1.0;
scanf("%d", &n);
for(i=1; i<=n; i++){
f = f/i;
e += f;
}
printf("%.10f", e);
return 0;
}