关于线性回归假设

本文围绕线性回归展开,介绍了一元线性回归的基本假设,如随机误差项均值为0、有相同方差等。阐述了违背基本假设时,普通最小二乘法估计量不再是最佳线性无偏估计量,但模型仍可估计。还提及用DW检验残差序列相关性,以及多重共线性对模型的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(来自牛客网)关于线性回归的描述,以下正确的有: BCE

A 基本假设包括随机干扰项是均值为0,方差为1的标准正态分布

B 基本假设包括随机干扰项是均值为0的同方差正态分布

C 在违背基本假设时,普通最小二乘法估计量不再是最佳线性无偏估计量

D 在违背基本假设时,模型不再可以估计

E 可以用DW检验残差是否存在序列相关性

F 多重共线性会使得参数估计值方差减小


一元线性回归的基本假设有
1、随机误差项是一个期望值或平均值为0的随机变量;
2、对于解释变量的所有观测值,随机误差项有相同的方差;
3、随机误差项彼此不相关;
4、解释变量是确定性变量,不是随机变量,与随机误差项彼此之间相互独立;
5、解释变量之间不存在精确的(完全的)线性关系,即解释变量的样本观测值矩阵是满秩矩阵;
6、随机误差项服从正态分布

违背基本假设的计量经济学模型还是可以估计的,只是不能使用普通最小二乘法进行估计。
当存在异方差时,普通最小二乘法估计存在以下问题: 参数估计值虽然是无偏的,但不是最小方差线性无偏估计。

杜宾-瓦特森(DW)检验,计量经济,统计分析中常用的一种检验序列一阶 自相关 最常用的方法。

所谓多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。影响

(1)完全共线性下参数估计量不存在

(2)近似共线性下OLS估计量非有效

多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(Variance Inflation Factor, VIF)

(3)参数估计量经济含义不合理

(4)变量的显著性检验失去意义,可能将重要的解释变量排除在模型之外

(5)模型的预测功能失效。变大的方差容易使区间预测的“区间”变大,使预测失去意义。

### 一元线性回归的基本假设和前提条件 在一元线性回归分析中,为了使模型有效并得出可靠的结论,通常需要满足以下几个基本假设和前提条件: #### 1. **线性关系** 因变量 \( y \) 和自变量 \( x \) 之间的关系应为线性关系。这意味着数据点应该大致分布在一条直线上[^5]。 #### 2. **独立性** 观察值之间应该是相互独立的。即对于不同的样本点,其误差项 \( \varepsilon_i \) 应该彼此无关。 #### 3. **正态分布** 误差项 \( \varepsilon \) 需要服从均值为零、方差恒定的正态分布。具体来说,\( E(\varepsilon) = 0 \),并且 \( Var(\varepsilon) = \sigma^2 \)。这一假设确保了参数估计的有效性和置信区间的可靠性。 #### 4. **同方差性(Homoscedasticity)** 误差项的方差在整个解释变量范围内保持不变。换句话说,无论 \( x \) 的取值是多少,误差项的标准差都相同。 #### 5. **无多重共线性** 虽然在一元线性回归中不存在多个自变量的情况,但在扩展到多元线性回归时需要注意这一点。这里仅强调,在单一自变量的情况下无需考虑此问题[^4]。 #### 6. **外生性** 自变量 \( x \) 是固定的或者至少是非随机的。如果 \( x \) 是随机变量,则需进一步验证它与其他扰动项不相关。 以下是实现上述假设的一个简单代码示例,展示如何通过Python中的`statsmodels`库完成一元线性回归建模,并初步检查某些假设是否成立: ```python import numpy as np import statsmodels.api as sm from matplotlib import pyplot as plt # 构造模拟数据集 np.random.seed(0) X = np.linspace(0, 10, 100).reshape(-1, 1) epsilon = np.random.normal(loc=0, scale=1, size=X.shape[0]).reshape(-1, 1) Y = 2 * X + epsilon # 添加常数列以便计算截距 X_with_const = sm.add_constant(X) # 创建OLS对象并拟合模型 model = sm.OLS(Y, X_with_const) results = model.fit() print(results.summary()) # 绘制残差图以检测异方差性等问题 residuals = results.resid plt.scatter(np.arange(len(residuals)), residuals) plt.axhline(0, color='red', linestyle='--') plt.title('Residual Plot') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值