线性回归违背基本情况的假设-异方差、自相关、异常值

本文详细探讨了回归分析中常见的三个问题:异方差性、自相关和异常值。异方差性可能导致参数估计的方差过大、显著性检验失效及预测效果不佳。解决方法包括加权最小二乘估计。自相关则可能造成参数估计失去最小方差线性无偏性,可通过迭代法和差分法处理。对于异常值,可通过标准化和学生化残差识别,并采取删除残差法处理。理解并正确处理这些问题对于提高回归模型的准确性和可靠性至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


参考:
违背基本情况的假设-4.1-4.3异方差问题
违背基本情况的假设-4.4自相关问题
违背基本情况的假设-4.5异常值问题


1 违背基本情况的假设-异方差

  假定随机误差项 ε 1 , ε 2 , ⋯   , ε n \varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n ε1,ε2,,εn 具有等方差,独立或不相关关系。
即G-M条件
在这里插入图片描述

违背基本假设的情况:

第一种情况:异方差
v a r ( ε i ) ≠ v a r ( ε j ) , i ≠ j var(\varepsilon_i) \neq var(\varepsilon_j), i\neq j var(εi)=var(εj),i=j
第二种情况:自相关
c o v ( ε i , ε j ) ≠ 0 cov(\varepsilon_i,\varepsilon_j)\neq 0 cov(εi,εj)=0

1.1 异方差产生的原因

  由于实际问题具有错综复杂性,故在回归模型建模时,某一因素一些因素随着解释变量观测值的变化而对被解释变量产生不同的影响,导致随机误差项产生不同方差
在这里插入图片描述


## 1.2 异方差性带来的问题   当存在异方差时, 普通最小二乘估计存在以下问题:

♢ \diamondsuit 参数估计值虽是无偏调度,但不是最小方差线性无偏估计
 当异方差存在时, D ( β ^ ) D(\hat{\beta}) D(β^) 大于同方差条件下的方差。

♢ \diamondsuit 参数的显著性检验失效;
当异方差存在时,若继续用最小二乘估计来估计参数,将会低估 D ( β ^ ) D(\hat{\beta}) D(β^) ,进一步高估回归系数的 T 统计量的值,最后造成某些不显著的回归系数变显著。

♢ \diamondsuit 回归方程的应用效果极不理想。


1.3 异方差性的检验

异方差检验方法:
1、残差图分析法
2、等级相关系数法(斯皮尔曼检验(Spearman))

1.3.1 残差图分析法

在这里插入图片描述
a 图:不管 x 如何变化,方差始终在一定的范围内( ± 3 σ \pm3\sigma ±3σ)变化。
b图:随着 x 的变化,方差逐渐增大,出现了异方差性。

1.3.2 等级相关系数法(斯皮尔曼检验(Spearman))

第一步:作 y y y 关于 x x x 的普通最小二乘回归,求出 ε i \varepsilon_i εi 的估计值,即 e i e_i ei 的值。

第二步:取 e i e_i ei 的绝对值,即 | e i e_i ei| 的,把 x i x_i xi 和 | e i e_i ei| 按递增或递减的次序排列后分成等级,然后计算 x i x_i xi 和 | e i e_i ei| 的等级差数 d i d_i di,再按下式计算出等级相关系数
r s = 1 − 6 n ( n 2 − 1 ) ∑ i = 1 n d i 2 r_s=1-\frac{6}{n(n^2-1)}\sum_{i=1}^nd_i^2 rs=1n(n21)6i=1ndi2
其中 n n n 为样本容量。

第三步:做等级相关系数的显著性检验。
 在 n > 8 n>8 n>8 的情况下,用下式对样本等级相关系数 r s r_s rs 进行 t t t 检验
H 0 : r s = 1 , H 1 : r s ≠ 0 H_0:r_s=1,H_1:r_s \not= 0 H0:rs=1,H1:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值