参考:
违背基本情况的假设-4.1-4.3异方差问题
违背基本情况的假设-4.4自相关问题
违背基本情况的假设-4.5异常值问题
文章目录
1 违背基本情况的假设-异方差
假定随机误差项 ε 1 , ε 2 , ⋯ , ε n \varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n ε1,ε2,⋯,εn 具有等方差,独立或不相关关系。
即G-M条件
违背基本假设的情况:
第一种情况:异方差
v a r ( ε i ) ≠ v a r ( ε j ) , i ≠ j var(\varepsilon_i) \neq var(\varepsilon_j), i\neq j var(εi)=var(εj),i=j
第二种情况:自相关
c o v ( ε i , ε j ) ≠ 0 cov(\varepsilon_i,\varepsilon_j)\neq 0 cov(εi,εj)=0
1.1 异方差产生的原因
由于实际问题具有错综复杂性,故在回归模型建模时,某一因素或一些因素随着解释变量观测值的变化而对被解释变量产生不同的影响,导致随机误差项产生不同方差。
## 1.2 异方差性带来的问题 当存在异方差时, 普通最小二乘估计存在以下问题:
♢ \diamondsuit ♢ 参数估计值虽是无偏调度,但不是最小方差线性无偏估计;
当异方差存在时, D ( β ^ ) D(\hat{\beta}) D(β^) 大于同方差条件下的方差。
♢ \diamondsuit ♢ 参数的显著性检验失效;
当异方差存在时,若继续用最小二乘估计来估计参数,将会低估 D ( β ^ ) D(\hat{\beta}) D(β^) ,进一步高估回归系数的 T 统计量的值,最后造成某些不显著的回归系数变显著。
♢ \diamondsuit ♢ 回归方程的应用效果极不理想。
1.3 异方差性的检验
异方差检验方法:
1、残差图分析法
2、等级相关系数法(斯皮尔曼检验(Spearman))
1.3.1 残差图分析法
a 图:不管 x 如何变化,方差始终在一定的范围内( ± 3 σ \pm3\sigma ±3σ)变化。
b图:随着 x 的变化,方差逐渐增大,出现了异方差性。
1.3.2 等级相关系数法(斯皮尔曼检验(Spearman))
第一步:作 y y y 关于 x x x 的普通最小二乘回归,求出 ε i \varepsilon_i εi 的估计值,即 e i e_i ei 的值。
第二步:取 e i e_i ei 的绝对值,即 | e i e_i ei| 的,把 x i x_i xi 和 | e i e_i ei| 按递增或递减的次序排列后分成等级,然后计算 x i x_i xi 和 | e i e_i ei| 的等级差数 d i d_i di,再按下式计算出等级相关系数
r s = 1 − 6 n ( n 2 − 1 ) ∑ i = 1 n d i 2 r_s=1-\frac{6}{n(n^2-1)}\sum_{i=1}^nd_i^2 rs=1−n(n2−1)6i=1∑ndi2
其中 n n n 为样本容量。
第三步:做等级相关系数的显著性检验。
在 n > 8 n>8 n>8 的情况下,用下式对样本等级相关系数 r s r_s rs 进行 t t t 检验
H 0 : r s = 1 , H 1 : r s ≠ 0 H_0:r_s=1,H_1:r_s \not= 0 H0:rs=1,H1: