onnxruntime指定gpu设备

本文探讨了如何利用GitHub的ML-Model-CI工具进行持续集成。通过设置自动化测试和部署流程,确保代码质量并加速项目开发。文章详细介绍了配置过程和关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://github.com/cap-ntu/ML-Model-CI/issues/37

### 配置和使用 ONNXRuntime 调用 GPU 进行推理加速 为了利用 GPU 来加速模型推理过程,需要安装支持 GPUONNX Runtime 版本 `onnxruntime-gpu` 并确保环境已正确设置。 #### 安装 onnxruntime-gpu 首先,通过 pip 或 conda 安装适用于 GPUONNX Runtime: 对于 pip 用户: ```bash pip install onnxruntime-gpu ``` 对于 Conda 用户: ```bash conda install -c conda-forge onnxruntime-gpu ``` 确认 CUDA 和 cuDNN 已经正确安装并配置好,因为这些库是运行基于 GPU 推理所必需的[^1]。 #### 使用 Python API 设置 GPU 提供者 一旦安装完成,在加载 ONNX 模型之前指定要使用的执行提供程序。默认情况下,如果检测到了可用的 NVIDIA GPU 设备,则会自动优先选择它;但是也可以显式地定义这一点来确保行为一致性和可移植性。 下面是一个简单的例子展示怎样创建 Session 对象时指明使用 GPU Provider: ```python import onnxruntime as ort import numpy as np # 创建 session 时候传入 ['CUDAExecutionProvider'] 参数表示启用GPU计算资源 session = ort.InferenceSession("model.onnx", providers=['CUDAExecutionProvider']) input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name dummy_input = np.random.randn(1, 3, 224, 224).astype(np.float32) result = session.run([output_name], {input_name: dummy_input}) print(result) ``` 这段代码片段展示了如何初始化一个带有特定设备类型的 InferenceSession 实例,并传递输入数据给模型以获取预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值