高斯牛顿法进行三维球拟合(含C++代码)

高斯牛顿法进行三维球拟合

最小二乘法

\quad 我们假设目标函数为 F ( x ) F(x) F(x),误差函数为 f ( x ) f(x) f(x),则最小二乘可表示为 m i n F ( x ) = 1 2 ∥ f ( x ) ∥ 2 2 minF(x)=\frac{1}{2}\parallel f(x) \parallel {_2^2} minF(x)=21f(x)22 \quad 那么如何求解这个问题呢?
\quad 常规的思路就是对目标函数 F ( x ) F(x) F(x)进行求导,当其导数为0的时候,求 x x x的最优解,最终求得极值,这里需要注意导数为0的点,不一定就是极值点,可能会是鞍点,也就是我们所说的局部最优解。然而,有些时候,若目标函数 F ( x ) F(x) F(x)不是很容易进行求导,这时就需要使用一些迭代的方法,来使得目标函数 F ( x ) F(x) F(x)下降,这样就可以逐步迭代,求得最小值了。整个的迭代流程如下所示:
在这里插入图片描述 \quad 因此,上述问题就变成了不断寻找下降增量 Δ x k \Delta x_k Δxk的问题。为了方便求解,我们只需要关心误差函数 f ( x ) f(x) f(x)在迭代值处的局部性质,而不用考虑目标函数 F ( x ) F(x) F(x)在迭代值处的全局性质。
\quad 下面介绍常见的两种优化算法:最速下降法(梯度下降法),它是用于找到可微函数的局部最小值的一阶迭代优化算法,如果实值函数 f ( x ) f(x) f(x)在点 x = a x=a x=a处可微且有定义,那么函数 f ( x ) f(x) f(x)在点 x = a x=a x=a处,沿着梯度的反方向 − Δ f ( a ) -\Delta f(a) Δf(a)下降的最快,即之前提到需求解的增量 Δ x k = − Δ f ( a ) \Delta x_k=-\Delta f(a) Δxk=Δf(a)tuo
当然,我们还需要该方向上取一个步长 λ,求得最快的下降方式,即 x n + 1 = x n − λ Δ f ( a ) x_{n+1}=x_n-\lambda\Delta f(a) xn+1=xnλΔf(a)。它的缺点是过于贪心,容易走出锯齿路线,反而增加了迭代次数。
而牛顿法则是一个二阶梯度算法,它的增量的解可以从 H Δ x k = − J ( x ) T H\Delta x_k=-J(x)^T HΔxk=J(x)T(具体推导过程可以查阅相关资料)解出。为了求解这个方程,此时需要计算目标函数的Hessian矩阵,这在问题规模较大时计算量非常大并且很难求解。

高斯牛顿法

\quad 前两种算法都是针对目标函数 F ( x ) F(x) F(x)求解,不可避免遇到求Hessian矩阵的问题,而高斯牛顿法则选取了误差函数 f ( x ) f(x) f(x)来进行优化求解,它的思想是将 f ( x ) f(x) f(x) 进行一阶的泰勒展开: f ( x + Δ x ) ≈ f ( x ) + J ( x ) T Δ x f(x+\Delta x)\approx f(x)+ \bm{J(x)} ^T\Delta x\quad\quad\quad\quad f(x+Δx)f(x)+J(x)TΔx \quad 上式中的 J ( x ) T \bm{J(x)}^T J(x)T f ( x ) f(x) f(x)的雅可比矩阵,或者简单来说,就是 f ( x ) f(x) f(x)关于 x x x的一阶导数。那么,我们从上面的迭代步骤2中可以看到,当前的目标是为了寻找下降矢量 Δ x \Delta x Δx,使得 ∥ f ( x + Δ x ) ∥ 2 2 \parallel f(x+\Delta x) \parallel {_2^2} f(x+Δx)22达到最小。因此,我们的最小二乘问题变成如下问题: Δ x ∗ = a r g    m i n 1 2 ∥ f ( x + Δ x ) ∥ 2 2 ≈ a r g    m i n 1 2 ∥ f ( x ) + J ( x ) T Δ x ∥ 2 2 \Delta x^{*}=arg\;min\frac{1}{2}\parallel f(x+\Delta x) \parallel {_2^2}\approx arg\;min\frac{1}{2}\parallel f(x)+ \bm{J(x)} ^T\Delta x \parallel {_2^2} Δx=argmin21f(x+Δx)22argmin21f(x)+J(x)TΔx22
对上式进行关于 Δ x \Delta x Δx求导,并令其为0,具体推到可以查阅资料,于是得到如下方程组:
J ( x ) T J ( x ) Δ x = − J ( x ) T f ( x ) \bm{J(x)} ^T\bm{J(x)}\Delta x=-\bm{J(x)} ^Tf(x) J(x)TJ(x)Δx=J(x)Tf(x)这个线性方程有很多种名称,如:增量方程,高斯牛顿方程或正规方程。我们把 J ( x ) T J ( x ) \bm{J(x)} ^T\bm{J(x)} J(x)TJ(x)定义为 H ( x ) H(x) H(x),把 − J ( x ) T f ( x ) -\bm{J(x)} ^Tf(x) J(x)Tf(x)定义为 g ( x ) g(x) g(x),此时变成了: H Δ x = g H\Delta x=g HΔx=g这样,就可以优化求解了。上面的最小二乘的优化步骤就可以变为:
在这里插入图片描述
对比之前的牛顿法,两个式子中 H ( x ) H(x) H(x)含义不一样了。当然,这样的算法也有一定的问题,例如:如果求出来的步长 Δ x k \Delta x_k Δxk太大,会导致其局部近似不精确,严重的时候,可能无法保证迭代收敛。L-M算法又在这个基础上进行了改进,不过它不在这篇文章的讨论范围。

三维球拟合

\quad 任何拟合算法都会有一定的局限性,回到主题,我们将利用高斯牛顿法拟合三维球,空间三维球的方程为: ( x − a ) 2 + ( y − b ) 2 + ( z − c ) 2 = r 2 (x-a)^2+(y-b)^2+(z-c)^2=r^2 (xa)2+(yb)2+(zc)2=r2其中, a , b , c a,b,c a,b,c分别为球心的xyz坐标, r r r为球半径。
对于这个方程,我们的目标是:找到参数 a , b , c , r a,b,c,r a,b,c,r合适的取值来求解下面这个最小二乘问题 min ⁡ a , b , c , r ∑ i = 1 n 1 2 ∥ f i ( a , b , c , r ) ∥ 2 2 = min ⁡ a , b , c , r ∑ i = 1 n 1 2 ∥ ( x i − a ) 2 + ( y i − b ) 2 + ( z i − c ) 2 − r i 2 ∥ 2 2 \min\limits_{a,b,c,r}\sum\limits_{i=1}^n\frac{1}{2}\parallel f_i(a,b,c,r) \parallel {_2^2}=\min\limits_{a,b,c,r}\sum\limits_{i=1}^n\frac{1}{2}\parallel (x_i-a)^2+(y_i-b)^2+(z_i-c)^2-r_i^2 \parallel {_2^2} a,b,c,rmini=1n21fi(a,b,c,r)22=a,b,c,rmini=1n21(xia)2+(yib)2+(zic)2ri222为了好看,写成矩阵形式,令 F ( a , b , c , r ) = [ f 1 ( a , b , c , r ) , f 2 ( a , b , c , r ) , ⋯   , f n ( a , b , c , r ) ] T F(a,b,c,r)=\begin{bmatrix}f_1(a,b,c,r),f_2(a,b,c,r),\cdots,f_n(a,b,c,r) \end{bmatrix}^T F(a,b,c,r)=[f1(a,b,c,r),f2(a,b,c,r),,fn(a,b,c,r)]T,上式变为 ( a , b , c , r ) ∗ = a r g    min ⁡ ∥ F ( a , b , c , r ) ∥ 2 2 (a,b,c,r)^*=arg\;\min\parallel F(a,b,c,r) \parallel {_2^2} (a,b,c,r)=argminF(a,b,c,r)22按照高斯牛顿法对其进行一阶泰勒展开:
F ( a k + 1 , b k + 1 , c k + 1 , r k + 1 ) ≈ F ( a k , b k , c k , r k ) + δ ∗ J k ( a , b , c , r ) F(a_{k+1},b_{k+1},c_{k+1},r_{k+1}) \approx F(a_{k},b_{k},c_{k},r_{k})+\delta* J_k(a,b,c,r) F(ak+1,bk+1,ck+1,rk+1)F(ak,bk,ck,rk)+δJk(a,b,c,r)
其中, δ = ( a k + 1 , b k + 1 , c k + 1 , r k + 1 ) − ( a k , b k , c k , r k ) \delta=(a_{k+1},b_{k+1},c_{k+1},r_{k+1})-(a_{k},b_{k},c_{k},r_{k}) δ=(ak+1,bk+1,ck+1,rk+1)(ak,bk,ck,rk),更加直白一点就是目标参数两次迭代前后的差值。于是,最小二乘问题简化成为: δ ∗ = a r g    min ⁡ ∥ F ( a k , b k , c k , r k ) + δ ∗ J k ( a , b , c , r ) ∥ 2 2 \bm\delta^*=arg\;\min\parallel F(a_{k},b_{k},c_{k},r_{k})+\delta* J_k(a,b,c,r) \parallel {_2^2} δ=argminF(ak,bk,ck,rk)+δJk(a,b,c,r)22现在,我们可以套用高斯牛顿里面的增量方程,得到 J k ( a k , b k , c k , r k ) T J k ( a k , b k , c k , r k ) δ = − J k ( a k , b k , c k , r k ) T F ( a k , b k , c k , r k ) J_k(a_k,b_k,c_k,r_k)^TJ_k(a_k,b_k,c_k,r_k) \bm\delta=-J_k(a_k,b_k,c_k,r_k) ^T F(a_{k},b_{k},c_{k},r_{k}) Jk(ak,bk,ck,rk)TJk(ak,bk,ck,rk)δ=Jk(ak,bk,ck,rk)TF(ak,bk,ck,rk)其中, J k ( a k , b k , c k , r k ) J_k(a_k,b_k,c_k,r_k) Jk(ak,bk,ck,rk)为F的雅可比矩阵,即: J ( a , b , c , r ) = ∂ F ∂ ( a , b , c , r ) = [ ∂ f 1 ( a , b , c , r ) ∂ ( a , b , c , r ) , ∂ f 2 ( a , b , c , r ) ∂ ( a , b , c , r ) , ⋯   , ∂ f n ( a , b , c , r ) ∂ ( a , b , c , r ) ] T J(a,b,c,r) =\frac{\partial F}{\partial (a,b,c,r)}=\begin{bmatrix}\frac{\partial f_1(a,b,c,r)}{\partial (a,b,c,r)},\frac{\partial f_2(a,b,c,r)}{\partial (a,b,c,r)},\cdots,\frac{\partial f_n(a,b,c,r)}{\partial (a,b,c,r)}\end{bmatrix}^T J(a,b,c,r)=(a,b,c,r)F=[(a,b,c,r)f1(a,b,c,r),(a,b,c,r)f2(a,b,c,r),,(a,b,c,r)fn(a,b,c,r)]T ∂ f ( a , b , c , r ) ∂ ( a , b , c , r ) = [ − 2 ( x − a ) , − 2 ( y − b ) , − 2 ( z − c ) , − 2 r ] T \frac{\partial f(a,b,c,r)}{\partial (a,b,c,r)}=\begin{bmatrix}-2(x-a),-2(y-b),-2(z-c),-2r\end{bmatrix}^T (a,b,c,r)f(a,b,c,r)=[2(xa),2(yb),2(zc),2r]T,将增量方程中的 δ \bm\delta δ解出,然后更新参数 ( a k + 1 , b k + 1 , c k + 1 , r k + 1 ) = ( a k , b k , c k , r k ) + δ (a_{k+1},b_{k+1},c_{k+1},r_{k+1})=(a_{k},b_{k},c_{k},r_{k})+\bm\delta (ak+1,bk+1,ck+1,rk+1)=(ak,bk,ck,rk)+δ,直至 δ \bm\delta δ足够小。
至此,全部理论部分已经说明完毕。如有错误,欢迎指正。
基于PCL的C++代码如下:

int main()
{
            pcl::PointCloud<pcl::PointXYZ> src;
			pcl::io::loadPLYFile("test.ply", src);
			std::cout << "高斯牛顿曲线拟合" << "\n";
			double ae = 2.0, be = -1.0, ce = 5.0, re = 600.0; //估计参数值
			int N = src.size();                          //数据点的个数
	
			/*** 开始 Gauss-Newton ***/
			int iterations = 100;   //最高的迭代次数
									//本次迭代的cost和上一次迭代的cost
									//用于比较是不是误差越来越小,类似于开口向上的二次函数,去寻找极值点,不一定是最小值
			double cost = 0, lastCost = 0;

			for (int iter = 0; iter < iterations; iter++) {
				//每次求解一次 Hδx = b;
				Eigen::Matrix4d H = Eigen::Matrix4d::Zero();
				Eigen::Vector4d b = Eigen::Vector4d::Zero();
				cost = 0;

				for (int i = 0; i < N; ++i) {
					double xi = src.points[i].x;
					double yi = src.points[i].y;
					double zi = src.points[i].z;
					//构建一个误差方程 f(x)
					double error = std::pow((xi - ae), 2) + std::pow((yi - be), 2) + std::pow((zi - ce), 2) - re*re;
					//定义雅克比
					Eigen::Vector4d J;
					J[0] = (-2.0*(xi - ae));
					J[1] = (-2.0*(yi - be));
					J[2] = (-2.0*(zi - ce));
					J[3] = (-2.0*re);

					H += J * J.transpose(); //J*J^t
					b += -error * J; // -f(x)*J

					cost += (error * error); //整个误差的方差
				}
				//采用ldlt 求解线性方程 Hδx = b
				Eigen::Vector4d dx = H.ldlt().solve(b);
				if (isnan(dx[0]))
				{
					std::cout << "result is nan!!!" << "\n";
					break;
				}
				//当前的误差比之前的误差还要大,说明找到了一个极值点,停止迭代
				if (iter > 0 && cost >= lastCost)
				{
					std::cout << "iter:" << cost << " >= last cost: " << lastCost << ",break." << "\n";
					break;
				}
				//令 Xk+1 = Xk + δx
				ae += dx[0];
				be += dx[1];
				ce += dx[2];
				re += dx[3];

				lastCost = cost;
				std::cout << "total cost: " << cost << ",\t\tupdate: " << dx.transpose() << "\t\testimated params: " << ae << " , " << be << " , " << ce << " , " << re << "\n";
			}
			std::cout << " estimated params: " << ae << " , " << be << " , " << ce << " , " << re << "\n";
			return 0;
}

参考链接.

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值