TensorFlow 安装chainer,以及conda安装cudatoolkit、cupy

chainer是一个深度学习框架,如果想使用GPU进行加速计算,必须在装chainer之前装cupy。为了方便,推荐使用conda安装cupy。

加入你已经装好了conda,cuda和它对应的驱动(nvidia-smi查看GPU版本和驱动)也安装好了。那么我们开始吧!

第一步:创建名为chainer的conda环境

conda create -n chainer python==3.8

第二步:安装cudnn

执行命令安装cudnn8.0 

conda install cudnn==8.0.5.39 -c conda-forge

第三步:conda安装cudatoolkit和cupy

conda install cudatoolkit=11.0

pip install cupy-cuda110==7.8.0

查看cupy安装是否成功,没有报错则说明成功安装。

python
import cupy

第四步:安装chainer

pip install chainer

检查chainer是否确实支持 CUDA/cuDNN

python

import chainer
# 如果chainer成功导入cupy:True
print(chainer.backends.cuda.available)    
# 如果 cuDNN 支持可用: True
print(chainer.backends.cuda.cudnn_enabled)

cupy对应cuda版本

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值