贝叶斯分类算法实例 --根据姓名推测男女

这篇博客介绍了贝叶斯分类算法的应用,通过姓名来推测人的性别。讲解了贝叶斯公式及其在疾病概率计算中的示例,进一步讨论了一个Python项目ngender,该项目根据姓名统计信息预测性别。核心代码分析了如何计算姓名属于男性或女性的概率,并通过比较概率来分类。
摘要由CSDN通过智能技术生成

一.从贝叶斯公式开始

贝叶斯分类其实是利用用贝叶斯公式,算出每种情况下发生的概率,再取概率较大的一个分类作为结果。我们先来看看贝叶斯公式:

P(A|B) = P(B|A) P(A) / P(B)

其中P(A|B)是指在事件B发生的情况下事件A发生的概率。

在贝叶斯定理中,每个名词都有约定俗成的名称:

  • P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。
  • P(A)是A的先验概率(或边缘概率)。之所以称为"先验"是因为它不考虑任何B方面的因素。
  • P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。
  • P(B)是B的先验概率或边缘概率。

这里可以用一个例子来说明这个公式。

看一个简单的小例子来展示贝叶斯定理

病人的例子:
某个医院早上收了八个门诊病人,如下表。

症状 职业 疾病
打喷嚏 护士 感冒
打喷嚏 农夫 过敏
头痛 建筑工人 脑震荡
头痛 建筑工人 感冒
打喷嚏 建筑工人 过敏
打喷嚏 教师 感冒
头痛 教师 脑震荡
打喷嚏 教师 过敏

现在又来了第九个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理:

P(A|B) = P(B|A) P(A) / P(B)

可得满足“打喷嚏”和“建筑工人”两个条件下,感冒的概率如下:

 P(感冒|打喷嚏x建筑工人)
= P(打喷嚏x建筑工人|感冒) x P(感冒) / P(打喷嚏x建筑工人)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值