MIT线性代数笔记-第2讲-矩阵消元

2.矩阵消元

例: { x + 2 y + z = 2 ⋅ ⋅ ⋅ ① 3 x + 8 y + z = 12 ⋅ ⋅ ⋅ ② 4 y + z = 2 ⋅ ⋅ ⋅ ③ \left\{\begin{matrix} x+2y+z=2···① \\ 3x+8y+z=12···② \\ 4y+z=2···③ \end{matrix}\right. x+2y+z=2⋅⋅⋅3x+8y+z=12⋅⋅⋅4y+z=2⋅⋅⋅

1 2 1 3 8 1 0 4 1 2 12 2 A b → ( 2 , 1 ) 1 2 1 2 0 2 − 2 6 0 4 1 2   → ( 3 , 1 ) → ( 2 , 1 ) 1 2 1 2 0 2 − 2 6 0 4 1 2   → ( 3 , 2 ) 1 2 1 0 2 − 2 0 0 5 2 6 − 10 U c \begin{matrix} \begin{matrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{matrix} & \begin{matrix} 2 \\ 12 \\ 2 \end{matrix} \\ A & b \end{matrix} \overset{(2,1)}{\rightarrow} \begin{matrix} \begin{matrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{matrix} \\ \ \end{matrix} \overset{(3,1)}{\rightarrow} \overset{(2,1)}{\rightarrow} \begin{matrix} \begin{matrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{matrix} \\ \ \end{matrix} \overset{(3,2)}{\rightarrow} \begin{matrix} \begin{matrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 5 \end{matrix} & \begin{matrix} 2 \\ 6 \\ -10 \end{matrix} \\ U & c \end{matrix} 130284111A2122b(2,1)100224121262 (3,1)(2,1)100224121262 (3,2)100220125U2610c

② − 3 ∗ ① ②-3*① 3消去 ② ② x x x,即消去 ② ② 的第一个未知数,记作 ( 2 , 1 ) (2,1) (2,1),而后 ( 3 , 1 ) (3,1) (3,1)处已消去,不做变化,最后 ( 3 , 2 ) (3,2) (3,2),完成消元

最后得到的 1 , 2 , 5 1,2,5 1,2,5称为主元,主元不能为 0 0 0,若出现消元后得到主元为 0 0 0,则可进行换行,若无论怎么换行都会使主元为 0 0 0,则方程组无解或有无数解(若无任意一组方程之间可互相推导则无解,反之有无数解),此时可以放弃当前列的主元,转而在同一行去求下一列的主元

最后将最终矩阵的方程意义表示并从上往下求解即可

消元过程用矩阵表示为: [ 1 0 0 − 3 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] E 2 , 1 A , [ 1 0 0 0 1 0 0 − 2 1 ] [ 1 2 1 0 2 − 2 0 4 1 ] = [ 1 2 1 0 2 − 2 0 0 5 ] E 3 , 2 U \begin{matrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} & = & \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix} \\ E_{2 , 1} & A \end{matrix} , \begin{matrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix} & = & \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 5 \end{bmatrix} \\ E_{3 , 2} & & & U \end{matrix} 130010001 E2,1 130284111 A= 100224121 , 100012001 E3,2 100224121 = 100220125 U


  1. 零矩阵( O O O): [ 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 0 ] \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} 000000000
  2. 单位矩阵( I I I): [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ] \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} 100010001 ,即矩阵当中的 1 1 1,与其他矩阵相乘时位于左右均可得到那个矩阵
  3. 对称矩阵( S S S):转置后无变化的矩阵,因而一定为方阵,如 D D D
  4. 对角阵( D D D):主对角线上只有非零元素且只在主对角线上有非零元素的矩阵,因而一定为方阵,如 I I I
  5. 上三角阵(U):主对角线上只有非零元素且主对角线下方都是 0 0 0的矩阵,因而一定为方阵
  6. 下三角阵( L L L):主对角线上只有非零元素且主对角线上方都是 0 0 0的矩阵,因而一定为方阵
  7. 方阵:行数与列数一致的矩阵,它的行数与列数统称阶数

打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值