MIT线性代数笔记-第10讲-四个基本子空间

10.四个基本子空间

矩阵的基本子空间包括列空间、零空间、行空间、和左零空间

列空间

主列为一组基,维数等于秩( r r r),是 R m R^m Rm的子空间


零空间

特解为一组基,维数等于自由变量数( n − r n-r nr),是 R n R^n Rn的子空间


行空间

  1. 行空间:某矩阵所有行向量的所有线性组合的集合,矩阵 A A A的行空间记作 C ( A T ) C(A^T) C(AT),即 A A A的转置的列空间

  2. 因为消元本质上为行的线性组合,所以消元不会对行空间产生影响,因而消元后得到的 R R R的前 r r r行即为行空间的一组基

  3. 维数等于秩( r r r),是 R n R^n Rn的子空间

    证明: 行空间相当于转置的列空间,而转置前后秩不变


左零空间

  1. 左零空间:某矩阵转置的零空间,矩阵 A A A的左零空间记作 N ( A T ) N(A^T) N(AT)

  2. 左零空间相当于已知 A T A^T AT,使 A T y ⃗ = 0 ⃗ A^T \vec{y} = \vec{0} ATy =0 的所有 y ⃗ \vec{y} y 的集合,即使 y ⃗ T A = 0 ⃗ T \vec{y}^T A = \vec{0}^T y TA=0 T的所有 y ⃗ \vec{y} y 的集合

  3. 用类似高斯-诺尔丹消元的方式,对 A A A进行增广得到 [ A I ] \begin{bmatrix} A & I \end{bmatrix} [AI]

    [ A I ] \begin{bmatrix} A & I \end{bmatrix} [AI]消元得到 [ R ? ] \begin{bmatrix} R & ? \end{bmatrix} [R?],即 E [ A I ] = [ R ? ] = [ R E ] E \begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} R & ? \end{bmatrix} = \begin{bmatrix} R & E \end{bmatrix} E[AI]=[R?]=[RE]

    E E E的末尾 m − r m - r mr行的转置即为左零空间的一组基

    证明: 因为 R R R的第 i i i行等于 E E E的第 i i i行与 A A A的乘积

    ​    因而 E E E的末尾 m − r m - r mr行分别与 A A A相乘后都可以得到 1 1 1 0 0 0

    ​    所以得到 m − r m - r mr个特解

    ​    下证这些特解线性无关

    ​     E E E表示 A A A消元过程操作的结合,因而 E E E一定为可逆矩阵

    ​    所以 E E E中各行线性无关,所以末尾 m − r m - r mr行,即特解线性无关

       这些特解线性无关,可以组成一组基

  4. 维数等于 m − r m-r mr,是 R m R^m Rm的子空间

    证明: 转置后行列互换,即 m , n m , n m,n互换


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

  • 32
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值